• Codeforce940A (Points on the line)


    A. Points on the line
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    We've got no test cases. A big olympiad is coming up. But the problemsetters' number one priority should be adding another problem to the round.

    The diameter of a multiset of points on the line is the largest distance between two points from this set. For example, the diameter of the multiset {1, 3, 2, 1} is 2.

    Diameter of multiset consisting of one point is 0.

    You are given n points on the line. What is the minimum number of points you have to remove, so that the diameter of the multiset of the remaining points will not exceed d?

    Input

    The first line contains two integers n and d (1 ≤ n ≤ 100, 0 ≤ d ≤ 100) — the amount of points and the maximum allowed diameter respectively.

    The second line contains n space separated integers (1 ≤ xi ≤ 100) — the coordinates of the points.

    Output

    Output a single integer — the minimum number of points you have to remove.

    Examples
    Input
    Copy
    3 1
    2 1 4
    Output
    1
    Input
    Copy
    3 0
    7 7 7
    Output
    0
    Input
    Copy
    6 3
    1 3 4 6 9 10
    Output
    3
    Note

    In the first test case the optimal strategy is to remove the point with coordinate 4. The remaining points will have coordinates 1 and 2, so the diameter will be equal to 2 - 1 = 1.

    In the second test case the diameter is equal to 0, so its is unnecessary to remove any points.

    In the third test case the optimal strategy is to remove points with coordinates 1, 9 and 10. The remaining points will have coordinates 3, 4 and 6, so the diameter will be equal to 6 - 3 = 3.

    分析:数据量小,直接暴力。=_=

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    int a[2000];
    int main()
    {
        int N,d,x;
        scanf("%d%d",&N,&d);
        for(int i=0;i<N;i++) 
        {scanf("%d",&x);a[x]++;}
        int ans=9999999;
        for(int i=1;i<101;i++)
        {
            int temp=i+d,sum=0;
            for(int j=1;j<101;j++)
            {
                if(j>=i&&j<=temp) continue;
                    sum+=a[j];
            }
            ans=min(ans,sum);
        }
        printf("%d
    ",ans);
        return 0;
    }
    View Code
  • 相关阅读:
    JavaScript 移动端拖动元素
    JavaScript轮播图
    JavaScript缓动动画函数封装
    JavaScript mouseenter和mouseover的区别
    类欧几里得算法
    AGC043 A~C 解题报告
    「UOJ495」新年的促销
    「BZOJ4842」Delight for a Cat
    Atcoder AGC002 解题报告
    Atcoder AGC001 解题报告
  • 原文地址:https://www.cnblogs.com/ACRykl/p/8468740.html
Copyright © 2020-2023  润新知