• Dima and Lisa


    Dima and Lisa

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Dima loves representing an odd number as the sum of multiple primes, and Lisa loves it when there are at most three primes. Help them to represent the given number as the sum of at most than three primes.

    More formally, you are given an odd numer n. Find a set of numbers pi (1 ≤ i ≤ k), such that

    1. 1 ≤ k ≤ 3
    2. pi is a prime

    The numbers pi do not necessarily have to be distinct. It is guaranteed that at least one possible solution exists.

    Input

    The single line contains an odd number n (3 ≤ n < 109).

    Output

    In the first line print k (1 ≤ k ≤ 3), showing how many numbers are in the representation you found.

    In the second line print numbers pi in any order. If there are multiple possible solutions, you can print any of them.

    Sample test(s)
    input
    27
    output
    3
    5 11 11
    Note

    A prime is an integer strictly larger than one that is divisible only by one and by itself.

     哥德巴赫猜想:

        两个素数差距不超过800;

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    bool is_prime(int n){
        for(int i = 2; i <= sqrt(n); i++){
            if(n%i == 0)return 0;
        }
        return 1;
    }
    int main(){
        int n;
        scanf("%d",&n);
        if(is_prime(n))
            printf("1
    %d",n);
        else if(is_prime(n-2))
            printf("2
    %d 2",n-2);
        else if(is_prime(n-4))
            printf("3
    %d 2 2",n-4);
        else {
            for(int i = 3;; i++){
                int m = n - i;
                for(int j = 3; j < m; j += 2){
                    if(is_prime(m-j) && is_prime(j)){
                        printf("3
    %d %d %d",m-j,j,i);
                        return 0;
                    }
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    linux远程文件、目录操作
    make update-api的使用
    android4.1设置系统 默认方向
    NAIPC2018-K-Zoning Houses
    ICPC2017 Urumqi
    牛客多校第十场-D- Rikka with Prefix Sum
    杭电多校第八场-A-Character Encoding
    杭电多校第七场-J-Sequence
    ConvexScore
    异或序列
  • 原文地址:https://www.cnblogs.com/ACMessi/p/4862462.html
Copyright © 2020-2023  润新知