• BZOJ 1010 玩具装箱 斜率优化DP


         详情见 http://www.cnblogs.com/proverbs/archive/2013/02/01/2713109.html(我觉得这里面讲得已经够详细了,我就不赘述了)

         还是来回忆一下做这道题的历程吧!一开始的确有点想错了,但马上又反应过来,清楚了题意。写了个 n^2 的算法。很明显,对于n <=  50000 的数据,肯定是要TLE的。(援引我看博客过程中看到的一句话来形容就是“省选题的数据就是硬”。)没办法,只能上网找百度(太弱了)。一开始的确有点茫然,但马上就决定要自己推导一下,马上思路就清晰了。但对于该算法的正确性还有所怀疑,所以一个下午都在思考(上课都是恍恍惚惚的)。后来大致明白了。

        一开始有疑惑的地方有,为什么可以直接在队首维护后的队列中取出首位呢? 原因在于 设 i  < j 如果一开始 j 比 i 更优那么 i 会被踢出队列。那为什么不可以设 i < j < k 中 j 虽然比 i 差 但 k 比 i 更优呢! 原因在于如果 i < j < k 三者这样的位置关系,我们是会在队尾维护的过程中把这种情况去掉。 所以可以直接在队首维护后的队列中取出首位。 

        斜率优化其实就是把每个状态看上直角坐标系上离散的点抽象出x,y 表示斜率 (y2 - y1) / (x2 - x1) 于一个关系状态i个函数的关系,然后维护点见斜率的上凸性或者下凸性。具体的情况要看于i有关的函数的单调性。

    说一些注意事项:

        注意斜率尽量中乘法,不要中实数(的确,误差影响很大),如有必要全用long long,以免溢出。注意 x2 - x1可能小于0不等式的负号要改变

        这道题一开始用 int , WA了。

     1 #include<cstdio>
     2 #include<iostream>
     3 #define sqr(x) (x) * (x)
     4 #define rep(i,j,k) for(int i = j; i <= k; i++)
     5 #define maxn 100000
     6 #define ll long long
     7 using namespace std;
     8 
     9 ll dp[maxn], sum[maxn], q[maxn], s, t, c[maxn];
    10 ll G(int i,int j)
    11 {
    12     return sqr(sum[i])-sqr(sum[j])+dp[i]-dp[j];
    13 }
    14 
    15 ll S(int i,int j)
    16 {
    17     return sum[i] - sum[j];
    18 }
    19 
    20 int read()
    21 {
    22     int s = 0, t = 1; char c = getchar();
    23     while( !isdigit(c) ){
    24         if( c == '-' ) t = -1; c = getchar();
    25     }
    26     while( isdigit(c) ){
    27         s = s * 10 + c -'0';  c=  getchar();
    28     }
    29     return s * t;
    30 }
    31 
    32 int main()
    33 {
    34     ll n = read(), l = read();
    35     c[0] = 0;
    36     rep(i,1,n){
    37         c[i] = c[i-1] + read();
    38         sum[i] = c[i] + i; 
    39         cout<<sum[i]<<endl;
    40     }
    41     q[0] = 0, s = 0, t = 0,dp[0] = 0; 
    42     rep(i,1,n){
    43         ll k = sum[i] - l - 1;
    44         while( s < t && G(q[s+1],q[s]) <= 2*k*S(q[s+1],q[s])) s++;
    45         int j = q[s];
    46         dp[i] = sqr(k-sum[j]) + dp[j];
    47         while( s < t && G(q[t],q[t-1])*S(i,q[t]) >= G(i,q[t]) * S(q[t],q[t-1])) t--;
    48         q[++t] = i; 
    49     }
    50     cout<<dp[n]<<endl;
    51     return 0;
    52 } 

    1010: [HNOI2008]玩具装箱toy

    Time Limit: 1 Sec  Memory Limit: 162 MB
    Submit: 7823  Solved: 3015
    [Submit][Status][Discuss]

    Description

    P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

    Input

    第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

    Output

    输出最小费用

    Sample Input

    5 4
    3
    4
    2
    1
    4

    Sample Output

    1
     
     

    附POJ 3709 

    这道题与上面的差不多,这是多了一个每组应至少有k个数的限制。对此援引从博客上看到的

    “好,以下考虑每组不少于K个元素这个限制。

    要解决这个限制,只需延迟加入的时机即可。

    若延迟K-1个回合加入,有可能使前一组的个数少于K个。

    若延迟2*k-1个回合加入,则不会出现这情况。但此时加入的数应是i-k+1(假设是第I回合)” // 重点

    以及延迟加入时机后,队尾维护的代码也要修改(查错查了半天)。

    详情见 http://blog.sina.com.cn/s/blog_5f5353cc0100jxxo.html  

    http://www.cnblogs.com/zxndgv/archive/2011/08/01/2124300.html

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #define rep(i,j,k) for(int i = j; i <= k; i++)
     5 #define maxn 500010
     6 #define LL long long
     7 using namespace std;
     8 
     9 LL num[maxn], sum[maxn], f[maxn], q[maxn];
    10 int head, tail; 
    11 
    12 LL G(int k,int j) {
    13        return f[j]-f[k]-sum[j]+sum[k]+j*num[j+1]-k*num[k+1];
    14 }
    15  
    16 LL S(int k,int j) {
    17        return num[j+1]-num[k+1];
    18 }
    19 
    20 int read()
    21 {
    22     int s = 0, t = 1; char c = getchar();
    23     while( !isdigit(c) ){
    24         if( c == '-' ) t = -1; c = getchar();
    25     }
    26     while( isdigit(c) ){
    27         s = s * 10 + c - '0'; c = getchar();
    28     }
    29     return s * t;
    30 }
    31 
    32 int main()
    33 {
    34     int t = read();
    35     while( t-- ){
    36         int n = read(), k = read();
    37         sum[0] = f[0] = q[0] = head = tail = 0;
    38         rep(i,1,n){
    39             num[i] = read();
    40             sum[i] = sum[i-1] + num[i];
    41         }
    42         rep(i,1,n){
    43             while( head < tail && G(q[head+1],q[head])>=i*S(q[head+1],q[head]) ) head++;
    44             int j = q[head];
    45             f[i] = f[j] + sum[i] - sum[j] - num[j+1] * (i-j);
    46             if( i>=2*k-1 ) {
    47                 q[++tail]=i-k+1;
    48             }
    49             while( head < tail && G(q[tail-1],q[tail-2]) * S(q[tail],q[tail-1])  >= G(q[tail],q[tail-1]) * S(q[tail-1],q[tail-2] ) ) {
    50                 q[tail-1] = q[tail];
    51                 tail--;
    52             }
    53         }
    54         cout<<f[n]<<endl;
    55     }
    56     return 0;
    57 }

    将题目转化下:将一个升序的,有N个元素的序列,分组。要求每组的元素不少于K个,计算出组内各元素与最小元素的之差的和,将每组的这个值加起来,其和要最小。

     

    很容易可以得出一个结论:连续取比离散取得到的结果要好(很容易证,所以不证)。

    人一我十,人十我万!追逐青春的梦想,怀着自信的心,永不放弃!仿佛已看到希望,尽管还在远方
  • 相关阅读:
    SOA精华的内容和实用的知识
    众多SEO专家集体盛赞
    黑客大曝光:VoIP安全机密与解决方案
    博文视点大讲堂41期SEO难点之网站内部链接结构
    TransactSQL管理与开发实例精粹
    千万不要错过云计算兴起的时代
    《海量数据库解决方案》之位图索引的结构和特征
    Oracle开发艺术
    Android应用程序的开发
    BizTalk Accelerator for HL7医疗行业消息路由处理机制
  • 原文地址:https://www.cnblogs.com/83131yyl/p/5068233.html
Copyright © 2020-2023  润新知