题面:
题目背景:
HKE带着 $ n $ 个小朋友做游戏
题目描述:
现在有n个座位编号为 $ 1 $ 至 $ n $ ,这些小朋友也编号 $ 1 $ 至 $ n $ 。一开始所有小朋友都坐在相应的座位上。HKE的游戏可用一个n的排列 $ A(A_1,A_2cdots A_n $ )表示。一轮游戏时,对于所有的 $ 1leq ileq n $ ,坐在位置 $ i $ 上的小朋友坐到位置 $ A_i $ 上。
现在游戏进行了 $ k $ 轮,HKE想知道游戏结束后,位置 $ 1,2cdots n $ 分别坐了几号小朋友?
输入格式:
第一行 $ n,k $ 。
第二行 $ A_1,A_2cdots A_n $
输出格式:
一行n个数表示 k 轮游戏后坐在位置 $ 1,2……n $ 上的小朋友的编号
输入样例#1:
5 5
2 3 1 5 4
输出样例#1:
2 3 1 5 4
输入样例#2:
5 4
2 3 1 5 4
输出样例#2:
3 1 2 4 5
数据范围:
30%的数据, $ nleq1000 $ , $ kleq1000 $
100%的数据, $ nleq100000 $ , $ kleq2^{31}-1 $
本题 $ solution $ :
首先请允许我奶一波:本题出的是真的好!
某蒟蒻心路历程:
小文:这不是矩阵快速幂裸题吗?!!
题面:矩阵快速幂复杂度 $ n^3 $ OK?
小文:那就降到二维 $ n^2 $ 优化麻!!!
题面:.... $ nleq100000 $ ,are you sure?
小文:我 &% $ &#%&#% !!!!!!!
于是乎让我再仔细看看题目吧:
解 1 :跑图论求环
我们(在脑海里)建一个图,将第 i 步的结果与第 i+1 步的结果用一条边连起来,跑一遍你会发现这是一个环(即你不断转换下去会回到你的初始状态。所以你将 k mod 一下环的大小( $ leq n $ )然后跑一遍图即可。(稍稍维护一下复杂度)
这对蒟蒻来说太难了,于是就没有代码实现了
解 2 :快速幂
这题其实不存在矩阵成分(有启发效果),重点在与快速幂和你的转移过程。
原理:
1.转移的结合律:
下文中但凡以 2 3 1 5 4(一个栗子)为标准转移,2 3 1 5 4 分别表示 $ A_1 $ $ A_2 $ $ A_3 $ $ .... $ $ A_5 $ :
转移的实现:
inline void ans(){ //给ans数组转换
for(rg i=1;i<=n;++i) c[i]=a[i];
for(rg i=1;i<=n;++i) a[b[i]]=c[i];
}
对于一个以 2 3 1 5 4 为标准的转移,我们若转移两次,就相当于进行一次以 3 1 2 4 5 为标准的转移(不信试试);而我们若转移 3 次,就相当于先进行一次以 3 1 2 4 5 为标准的转移在进行一次以 2 3 1 5 4 为标准的转移。这说明小朋友换位置具有结合律,这是我们快速幂的基础。
而 3 1 2 4 5 是可以通过 2 3 1 5 4 推出来的(类似矩阵乘法):
$ egin{vmatrix}2 &3&1&4&5\2&3&1&4&5|&|&|&|&|\3&1&2&4&5end{vmatrix} $ $
看的出怎么推吗:先讲一下 3 是如何来的:
首先 3 的意义表示 1 号小朋友在转移两次后在 3 号位置。所以我们看到 1 号小朋友第一轮转换时要转换到 2 号位置,而第二轮转换时 2 号位置的人要转换到 3 号位置,所以就相当于一号小朋友在转移两次后要在 3 号位置。 1 2 4 5 也是这样得来的:实现:
inline void base(){ //给bese数组转换
for(rg i=1;i<=n;++i) c[i]=b[i];
for(rg i=1;i<=n;++i) b[i]=c[c[i]];
}
而此时如果我们需要以2 3 1 4 5为标准转移 4 次,就可以直接以 3 1 2 4 5为标准转移两次即可。同样我们还可以用 3 1 2 4 5来推出一个序列,以次序列为标准转移就能直接得到以2 3 1 4 5转移 4 次的结果。
然后直接快速幂求解即可!
代码实现:
以某一转换序列来推出下一个转换序列,我们用base函数实现。
以某一序列为标准转移,我们用ans函数实现。(这两个不一样!!
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#define rg register int
using namespace std;
int n,k;
int b[100001];// base
int a[100001];// answer
int c[100001];// 借来转换赋值
inline int qr(){ char ch; // 快读
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
inline void ans(){ //给ans数组转换
for(rg i=1;i<=n;++i) c[i]=a[i];
for(rg i=1;i<=n;++i) a[b[i]]=c[i];//重点1
}
inline void base(){ //给bese数组转换
for(rg i=1;i<=n;++i) c[i]=b[i];
for(rg i=1;i<=n;++i) b[i]=c[c[i]];//重点2
}
int main(){
n=qr();k=qr();
for(rg i=1;i<=n;++i)
b[i]=qr(),a[i]=i;//赋初值
while(k){
if(k&1)ans();
base();k>>=1;
}// 快速幂
for(rg i=1;i<=n;++i)
printf("%d ",a[i]);//输出ans
return 0;
}
本题重在理解,码量其实不高(除去快读等....
$ O_{(nlog{n})} $ 的复杂度加上码量还是很优秀的。
注:题目来源:华南师范大学附属中学,洛谷Noip热身赛