已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数。有序序列,的中位数指A(N−1)/2的值,即第⌊个数(A0为第1个数)。
输入格式:
输入分三行。第一行给出序列的公共长度N(0<N≤100000),随后每行输入一个序列的信息,即N个非降序排列的整数。数字用空格间隔。
输出格式:
在一行中输出两个输入序列的并集序列的中位数。
输入样例1:
5
1 3 5 7 9
2 3 4 5 6
输出样例1:
4
输入样例2:
6
-100 -10 1 1 1 1
-50 0 2 3 4 5
输出样例2:
1
每次比较中位数,两个数组分别去掉等量的不可能是中位数的数。
代码:
#include <stdio.h> #define MAX 100000 int m_search(int *a,int *b,int n) {//总2n个元素 偶数个 int l1 = 0,r1 = n -1,l2 = 0,r2 = n - 1; while(l1 != r1 || l2 != r2) { int m1 = (l1 + r1) / 2; int m2 = (l2 + r2) / 2; if(a[m1] == b[m2]) return a[m1]; if(a[m1] < b[m2]) { if((r1 - l1 + 1) % 2) {//总的奇数个数,保留中间点中间点可能会是中位数 l1 = m1;//a中部前面的元素比超过一半的元素小 舍去 r2 = m2;//b中部后面的元素比超过一半的元素大 舍去 } else {//总偶数个数,中间点在前半部分 r2 = m2;//b后半部分元素比总的一半的元素大,而中位数肯定会在前半部分 l1 = m1 + 1;//包括m1在内的前半部分比总的一半零一个元素小 不会出现中位数 } } else {//相反 if((r2 - l2 + 1) % 2) { r1 = m1; l2 = m2; } else { r1 = m1; l2 = m2 + 1; } } } return a[l1] < b[l2] ? a[l1] : b[l2]; } int main() { int n,a[MAX],b[MAX]; scanf("%d",&n); for(int i = 0;i < n;i ++) { scanf("%d",&a[i]); } for(int i = 0;i < n;i ++) { scanf("%d",&b[i]); } printf("%d",m_search(a,b,n)); return 0; }