A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most kcolors is called a (proper) k-coloring.
Now you are supposed to tell if a given coloring is a proper k-coloring.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 1), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.
Output Specification:
For each coloring, print in a line k-coloring
if it is a proper k
-coloring for some positive k
, or No
if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
4
0 1 0 1 4 1 0 1 3 0
0 1 0 1 4 1 0 1 0 0
8 1 0 1 4 1 0 5 3 0
1 2 3 4 5 6 7 8 8 9
Sample Output:
4-coloring No 6-coloring No
遍历加判断。set记录总共包含几种颜色,如果两个相邻点颜色相同就把flag置为1。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <set> #include <algorithm> #define MAX 10000 #define DMAX 10000 using namespace std; typedef long long ll; int n,m,k,flag; bool vis[MAX + 1]; vector<int> v[MAX + 1];//记录邻接表 也可以用数组模拟 vector比较方便 set<int> s; int color[MAX + 1]; void dfs(int x) { if(flag) return; s.insert(color[x]); vis[x] = true; for(int i = 0;i < v[x].size();i ++) { if(color[v[x][i]] == color[x]) flag = 1; if(flag) return; if(!vis[v[x][i]]) dfs(v[x][i]); } } int main() { int a,b; scanf("%d%d",&n,&m); for(int i = 0;i < m;i ++) { scanf("%d%d",&a,&b); v[a].push_back(b); v[b].push_back(a); } scanf("%d",&k); while(k --) { for(int i = 0;i < n;i ++) { scanf("%d",&color[i]); } s.clear(); flag = 0; memset(vis,false,sizeof(vis)); for(int i = 0;i < n;i ++) {///图不一定是连通图 if(!vis[i]) { dfs(i); } } if(flag || s.empty()) puts("No"); else printf("%d-coloring ",s.size()); } }