LintCode #46. Matrix Zigzag Traversal (Easy)
class Solution {
public:
vector<int> printZMatrix(vector<vector<int> > &matrix) {
vector<int> v;
if (matrix.size() == 0) return v;
int m = matrix.size(), n = matrix[0].size(), cnt = m * n;
int i = 0, j = 0;
int d[][2] = {{ -1, 1 }, { 1, -1 }};
int dir = 0;
while (v.size() < cnt) {
while (i >= 0 && i < m && j >= 0 && j < n) {
v.push_back(matrix[i][j]);
i += d[dir][0];
j += d[dir][1];
}
i -= d[dir][0];
j -= d[dir][1];
if (dir == 0) {
if (j + 1 < n) ++j;
else ++i;
} else {
if (i + 1 < m) ++i;
else ++j;
}
dir = (dir + 1) % 2;
}
return v;
}
};
思路:
- 斜着走的方向只有"右上"(
dir=0
)和"左下"(dir=1
). 按"右上", "左下"的顺序交替走. - 当走到边界的时候, 要么"向右走一步", 要么"向下走一步".
- 如果正在向"右上"走, 优先"向右走一步", 若不能则"向下走一步".
- 如果正在向"左下"走, 优先"向下走一步", 若不能则"向右走一步".
时间复杂度: O(m*n)
空间复杂度: O(1)
参照这篇博文的思路.
class Solution {
public:
/**
* @param matrix: a matrix of integers
* @return: a vector of integers
*/
vector<int> printZMatrix(vector<vector<int> > &matrix) {
vector<int> v;
if (matrix.size() == 0) return v;
int m = matrix.size(), n = matrix[0].size();
int sum = 0, x = 0, dx = -1;
while (sum < m + n - 1) {
while (x >= 0 && x < m && sum - x >= 0 && sum - x < n) {
v.push_back(matrix[x][sum - x]);
x += dx;
}
x -= dx;
sum++;
if ((dx == -1 && sum - x >= n)
|| (dx == 1 && x < m - 1)) {
++x;
}
dx = -dx;
}
return v;
}
};
思路:
- 观察下标规律.
(0, 0)
(0, 1), (1, 0)
(2, 0), (1, 1), (0, 2)
(0, 3), (1, 2), (2, 1)
(2, 2), (1, 3)
(2, 3)
可以看到各行x
与y
坐标的和是常数, 且该和逐行递增.
- 偶数行
x
递减, 奇数行x
递增. - 原解法有个缺陷是"矩阵越细长, 空循环就越多". 我的解法对这点进行了优化.
时间复杂度:O(m*n)
空间复杂度:O(1)