• 逆序(n个数中m个逆序)


    对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
    数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

    Input

    第一行为两个整数n,k。

    Output

    写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

    Sample Input

    4 1

    Sample Output3

    
    样例说明:
    下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
    100%的数据 n<=1000,k<=1000

    题目大意 :求在n个数中,存在m个逆序对数的所有情况。

    题目分析 :
       1.状态量 :dp[i][j]表示i个数时,存在j个逆序对的排列种数。
       2.分析状态转移方程:打个比方我们要求dp[4][2],它的总数排列是B[]={{1,4,2,3},{3,1,2,4},{2,1,4,3},{2,3,1,4},{1,3,4,2}}.在四个数中存在2个逆序对
    无非是考虑第i个如何插入i-1个数之中,当前i-1个位正排序是(1,2,3),那就把4插入2的前面1的后面,即(1,4,2,3)--dp[3][0].假设已经存在一个逆序对了。(1,3,2)
    ,(2,1,3)。那我们只需要插入的位置只要大于一个数就好了(1,3,4,2),(2,1,4,3)--dp[3][1],最后假设已经存在两个逆序对了(3,1,2),(2,3,1),只需放到最后即
    可(3,1,2,4),(2,3,1,4).转移方程相信已经很浅显了:d[i][j]=d[i-1][j]+d[i-1][j-1]+......+d[i-1][0];
       3.初始化:dp[i][0]=1;正序为1.
    AC代码:
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int mod=10000;
    int n,m;
    int f[1010][1010];
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            f[i][0]=1;
            for(int j=1;j<=i*(i-1)/2&&j<=m;j++)
            {
                for(int k=1;k<=i && j-(k-1)>=0;k++)
                {
                    //printf("f[%d][%d]:%d----f[%d][%d]:%d
    ",i,j,f[i][j],i-1,j-(k-1),f[i-1][j-(k-1)]);
                    f[i][j]=(f[i][j]+f[i-1][j-(k-1)])%mod;
                    //printf("f[%d][%d]:%d
    ",i,j,f[i][j]);
                }
            }
        }
        printf("%d
    ",f[n][m]);
    }
    

      

  • 相关阅读:
    如何将一个整数分散成百分位、千分位等
    好用的竖直无缝滚动
    图片轮播插件
    新浪sae授权流程的理解
    js和php对数字格式化
    控制input表单的输入的字数
    真实的恐怖(转载)
    日本的寒暑假+春假
    也不知道你今天的路线是怎么样的
    关于中日区别
  • 原文地址:https://www.cnblogs.com/7750-13/p/7397819.html
Copyright © 2020-2023  润新知