• Josephina and RPG


    Josephina and RPG

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 929    Accepted Submission(s): 265
    Special Judge


    Problem Description
    A role-playing game (RPG and sometimes roleplaying game) is a game in which players assume the roles of characters in a fictional setting. Players take responsibility for acting out these roles within a narrative, either through literal acting or through a process of structured decision-making or character development.
    Recently, Josephina is busy playing a RPG named TX3. In this game, M characters are available to by selected by players. In the whole game, Josephina is most interested in the "Challenge Game" part.
    The Challenge Game is a team play game. A challenger team is made up of three players, and the three characters used by players in the team are required to be different. At the beginning of the Challenge Game, the players can choose any characters combination as the start team. Then, they will fight with N AI teams one after another. There is a special rule in the Challenge Game: once the challenger team beat an AI team, they have a chance to change the current characters combination with the AI team. Anyway, the challenger team can insist on using the current team and ignore the exchange opportunity. Note that the players can only change the characters combination to the latest defeated AI team. The challenger team gets victory only if they beat all the AI teams.
    Josephina is good at statistics, and she writes a table to record the winning rate between all different character combinations. She wants to know the maximum winning probability if she always chooses best strategy in the game. Can you help her?
     
    Input
    There are multiple test cases. The first line of each test case is an integer M (3 ≤ M ≤ 10), which indicates the number of characters. The following is a matrix T whose size is R × R. R equals to C(M, 3). T(i, j) indicates the winning rate of team i when it is faced with team j. We guarantee that T(i, j) + T(j, i) = 1.0. All winning rates will retain two decimal places. An integer N (1 ≤ N ≤ 10000) is given next, which indicates the number of AI teams. The following line contains N integers which are the IDs (0-based) of the AI teams. The IDs can be duplicated.
     
    Output
    For each test case, please output the maximum winning probability if Josephina uses the best strategy in the game. For each answer, an absolute error not more than 1e-6 is acceptable.
     
    Sample Input
    4
    0.50 0.50 0.20 0.30
    0.50 0.50 0.90 0.40
    0.80 0.10 0.50 0.60
    0.70 0.60 0.40 0.50
    3
    0 1 2
     
    Sample Output
    0.378000
     
     1 /*                    dp[i+1][j]    
     2         dp[i][j]=
     3                     dp[i+1][num[i]]
     4 */
     5 #include<iostream>
     6 #include<cstdio>
     7 #include<cstring>
     8 #include<algorithm>
     9 #include<string>
    10 #include<set>
    11 #include<map>
    12 #include<vector>
    13 #include<stack>
    14 #include<queue>
    15 using namespace std;
    16 const int ms=12;
    17 const int cms=122;
    18 const int MAXN=10002;
    19 double dp[MAXN][cms];
    20 double p[cms][cms];
    21 int num[MAXN];
    22 int main()
    23 {
    24     int i,j,k,t,n,m,cnt;
    25     while(scanf("%d",&n)!=EOF)
    26     {
    27         for(cnt=1,i=n;i>=(n-3+1);i--)
    28             cnt*=i;
    29         cnt/=6;
    30         for(i=0;i<cnt;i++)
    31             for(j=0;j<cnt;j++)
    32                 scanf("%lf",&p[i][j]);
    33         scanf("%d",&m);
    34         for(i=1;i<=m;i++)
    35             scanf("%d",&num[i]);
    36         for(i=0;i<=cnt;i++)
    37             dp[m+1][i]=1.0;
    38         for(i=m;i>0;i--)
    39         {
    40             for(j=0;j<cnt;j++)
    41             {
    42                 dp[i][j]=p[j][num[i]]*max(dp[i+1][j],dp[i+1][num[i]]);
    43             }
    44         } 
    45         double ans=-1.0;
    46         for(j=0;j<cnt;j++)
    47             if(ans<dp[1][j])
    48                 ans=dp[1][j];
    49         printf("%.6lf
    ",ans); 
    50     } 
    51     return 0;
    52 }
  • 相关阅读:
    Xcode 8.2 想使用插件 怎么办? 教你科学的使用插件
    JSAPI_Ticket签名
    Java中HashMap,LinkedHashMap,TreeMap的区别[转]
    微信支付开发,再次签名,APP调用
    微信支付开发,统一下单
    android studio安装插件
    java实现mysql数据库的备份及还原
    java项目中读取src目录下的文件
    eclipse增加浏览器chrome
    cd 命令
  • 原文地址:https://www.cnblogs.com/767355675hutaishi/p/4089941.html
Copyright © 2020-2023  润新知