• Divisibility


    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible

    题意:给你一列整数,在整数间加‘ + ’ 或 ‘ - ‘,使这个算式的值能被k整除。

    用dp[ i ][ j ] 表示加上或减去第 i 个数后,所得值取模后的值能否为 j ,所以dp为bool型即可。

    状态转移方程:dp[ i ][ abs( j + num[i]) % k] = true;

                             dp[ i ][ abs( j -  num[i]) % k] = true; (当然,必须满足dp[ i - 1 ][ j ] == true, 才能进行状态转移)

    边界条件:dp[ 0 ][ 0 ] = true;

     

     1 #include"iostream"
     2 #include"cstdio"
     3 #include"cstring"
     4 #include"algorithm"
     5 #include"map"
     6 #include"set"
     7 #include"stack"
     8 #include"queue"
     9 using namespace std;
    10 const int ms=10001;
    11 const int mn=102;
    12 bool dp[ms][mn];
    13 int a[ms];
    14 int N,K;
    15 void solve()
    16 {
    17     memset(dp,false,sizeof(dp));
    18     dp[0][0]=true;
    19     for(int i=1;i<=N;i++)
    20         for(int j=0;j<K;j++)
    21             if(dp[i-1][j])
    22             {
    23                 dp[i][abs(j+a[i])%K]=true;   //涉及一点数论
    24                 dp[i][abs(j-a[i])%K]=true;
    25             }
    26     if(dp[N][0])
    27         cout<<"Divisible"<<endl;
    28     else
    29         cout<<"Not divisible"<<endl;
    30     return ;
    31 }
    32 int main()
    33 {
    34     cin>>N>>K;
    35     for(int i=1;i<=N;i++)
    36         cin>>a[i];
    37     solve();
    38     return 0;
    39 }
  • 相关阅读:
    winform npoi excel 样式设置
    winform NPOI excel 导出并选择保存文件路径
    datagridview 代码添加列
    表单名 name 选择器
    NPOI 设置excel 边框
    winform 版本号比较
    winform app.cpnfig 文件的引用
    blog发布测试
    jQuery选择器
    表格隔行变色
  • 原文地址:https://www.cnblogs.com/767355675hutaishi/p/3967382.html
Copyright © 2020-2023  润新知