• Divisibility


    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible

    题意:给你一列整数,在整数间加‘ + ’ 或 ‘ - ‘,使这个算式的值能被k整除。

    用dp[ i ][ j ] 表示加上或减去第 i 个数后,所得值取模后的值能否为 j ,所以dp为bool型即可。

    状态转移方程:dp[ i ][ abs( j + num[i]) % k] = true;

                             dp[ i ][ abs( j -  num[i]) % k] = true; (当然,必须满足dp[ i - 1 ][ j ] == true, 才能进行状态转移)

    边界条件:dp[ 0 ][ 0 ] = true;

     

     1 #include"iostream"
     2 #include"cstdio"
     3 #include"cstring"
     4 #include"algorithm"
     5 #include"map"
     6 #include"set"
     7 #include"stack"
     8 #include"queue"
     9 using namespace std;
    10 const int ms=10001;
    11 const int mn=102;
    12 bool dp[ms][mn];
    13 int a[ms];
    14 int N,K;
    15 void solve()
    16 {
    17     memset(dp,false,sizeof(dp));
    18     dp[0][0]=true;
    19     for(int i=1;i<=N;i++)
    20         for(int j=0;j<K;j++)
    21             if(dp[i-1][j])
    22             {
    23                 dp[i][abs(j+a[i])%K]=true;   //涉及一点数论
    24                 dp[i][abs(j-a[i])%K]=true;
    25             }
    26     if(dp[N][0])
    27         cout<<"Divisible"<<endl;
    28     else
    29         cout<<"Not divisible"<<endl;
    30     return ;
    31 }
    32 int main()
    33 {
    34     cin>>N>>K;
    35     for(int i=1;i<=N;i++)
    36         cin>>a[i];
    37     solve();
    38     return 0;
    39 }
  • 相关阅读:
    MySQL中的用户与授权
    Vim安装使用和配置
    Mysql中的explain和desc
    array_map、array_walk、array_reduce
    PHP二维数组去重(指定键名)
    git配置ssh秘钥(公钥以及私钥)windows
    在nginx上用FastCGI解析PHP
    关于token登录逻辑分析
    公有云 私有云 混合云 的区别
    使用Docker在服务器上部署Ubuntu,本地传文件到docker
  • 原文地址:https://www.cnblogs.com/767355675hutaishi/p/3967382.html
Copyright © 2020-2023  润新知