• 神经网络MNIST数据集分类tensorboard


       今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992 先放代码,注释比较详细,变量名字看单词就能知道啥意思

      

    import tensorflow as tf
    import tensorflow.examples.tutorials.mnist.input_data as input_data
     
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
     
    batch_size = 100
    n_batch = mnist.train.num_examples // batch_size
     
    def weight_variable(shape, name):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial, name=name)
     
    def bias_variable(shape, name):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial, name=name)
     
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")     # 1, 3位是1/   2, 4位是步长
     
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")  # 2, 3是步长
     
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x_input')
        y = tf.placeholder(tf.float32, [None, 10], name='y_input')
        with tf.name_scope('x_image'):
            # 转变x格式为4D向量[batch, in_height, in_width, in_channels] 通道为1表示黑白
            x_image = tf.reshape(x, [-1, 28, 28, 1], name='x_image')
     
    with tf.name_scope('Converlution_1'):
        # 初始化第一个卷积层的权重和偏置
        with tf.name_scope('Weight_Converlution_1'):
            Weight_Converlution_1 = weight_variable([5, 5, 1, 32],
                                                    name='Weight_Converlution_1')  # 5 * 5的卷积窗口,32个卷积核从1个平面抽取特征
                                                                                    # 生成32个特征图
        with tf.name_scope('Biase_Converlution_1'):
            Biase_Converlution_1 = bias_variable([32], name='Biase_Converlution_1')  # 每个卷积核一个偏置值
     
        # 把x_image和权值向量进行卷积,再加上偏置值,应用于relu激活函数
        with tf.name_scope('Converlution2d_1'):
            Converlution2d_1 = conv2d(x_image, Weight_Converlution_1) + Biase_Converlution_1
        with tf.name_scope('ReLu_1'):
            ReLu_Converlution_l = tf.nn.relu(Converlution2d_1)
        with tf.name_scope('Pool_1'):
            Pooling_1 = max_pool_2x2(ReLu_Converlution_l)  # max-pooling
     
    with tf.name_scope('Converlution_2'):
        # 初始化第二个卷积层的权重和偏置
        with tf.name_scope('Weight_Converlution_2'):
            Weight_Converlution_2 = weight_variable([5, 5, 32, 64],
                                                    name='Weight_Converlution_2')  # 5 * 5的卷积窗口,64个卷积核从32个平面抽取特征
            # 生成64个特征图
        with tf.name_scope('Biase_Converlution_2'):
            Biase_Converlution_2 = bias_variable([64], name='Biase_Converlution_2')
        with tf.name_scope('Cov2d_2'):
            Converlution2d_2 = conv2d(Pooling_1, Weight_Converlution_2) + Biase_Converlution_2
        with tf.name_scope('ReLu_2'):
            ReLu_Converlution_2 = tf.nn.relu(Converlution2d_2)
        with tf.name_scope('Pool_2'):
            Pooling_2 = max_pool_2x2(ReLu_Converlution_2)
     
    # 初始化第一个全连接层
    with tf.name_scope('Fully_Connected_L1'):
        with tf.name_scope('Weight_Fully_Connected_L1'):
            Weight_Fully_Connected_L1 = weight_variable([7 * 7 * 64, 1024],
                                                        name='Weight_Fully_Connected_L1')  # 上一层有7*7*64个神经元,全连接层有1024个神经元
        with tf.name_scope('Biase_Fully_Connected_L1'):
            Biase_Fully_Connected_L1 = bias_variable([1024], name='Biase_Fully_Connected_L1')
     
        # 把池化层2的输出扁平化为1维
        with tf.name_scope('Pooling_2_to_Flat'):
            Pooling_2_to_Flat = tf.reshape(Pooling_2, [-1, 7 * 7 * 64], name='Pooling_2_to_Flat')  # -1表示任意值
        with tf.name_scope('Wx_Plus_B1'):
            Wx_Plus_B1 = tf.matmul(Pooling_2_to_Flat, Weight_Fully_Connected_L1) + Biase_Fully_Connected_L1
        with tf.name_scope('ReLu_Fully_Connected_L1'):
            ReLu_Fully_Connected_L1 = tf.nn.relu(Wx_Plus_B1)
        # Keep——Prob
        with tf.name_scope('keep_prob'):
            keep_prob = tf.placeholder(tf.float32, name='keep_prob')
        with tf.name_scope('Fully_Connected_L1_Drop'):
            Fully_Connected_L1_Drop = tf.nn.dropout(ReLu_Fully_Connected_L1, keep_prob, name='Fully_Connected_L1_Drop')
     
    # 初始化第二个全连接层
    with tf.name_scope('Fully_Connected_L2'):
        with tf.name_scope('Weight_Fully_Connected_L2'):
            Weight_Fully_Connected_L2 = weight_variable([1024, 10], name='Weight_Fully_Connected_L2')
        with tf.name_scope('Biase_Fully_Connected_L2'):
            Biase_Fully_Connected_L2 = bias_variable([10], name='Biase_Fully_Connected_L1')
        with tf.name_scope('Wx_Plus_B2'):
            Wx_Plus_B2 = tf.matmul(Fully_Connected_L1_Drop, Weight_Fully_Connected_L2) + Biase_Fully_Connected_L2
        with tf.name_scope('SoftMax'):
            prediction = tf.nn.softmax(Wx_Plus_B2)
    # 交叉熵函数
    with tf.name_scope('cross_entropy'):
        cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,
                                                                                  logits=prediction), name='cross_entropy')
        tf.summary.scalar('cross_entropy', cross_entropy)    # 显示标量信息  tf.summary.scalar(tags, values, collections=None, name=None)
    # AdamOptimizer优化器
    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
     
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            tf.summary.scalar('accuracy', accuracy)
     
    # 合并所有summary
    merged = tf.summary.merge_all()
     
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        train_writer = tf.summary.FileWriter('logs/train', sess.graph)
        test_writer = tf.summary.FileWriter('logs/test', sess.graph)
        for i in range(101):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x: batch_xs,
                                            y: batch_ys,
                                            keep_prob: 0.5})
            # 记录训练集计算的参数
            summary = sess.run(merged, feed_dict={x: batch_xs,
                                                  y: batch_ys,
                                                  keep_prob: 1})
            train_writer.add_summary(summary, i)
     
            # 记录训练集计算的参数
            batch_xs, batch_ys = mnist.test.next_batch(batch_size)
     
            summary = sess.run(merged, feed_dict={x: batch_xs,
                                                  y: batch_ys,
                                                  keep_prob: 1.0})
            test_writer.add_summary(summary, i)
     
            test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images,
                                                     y: mnist.test.labels,
                                                     keep_prob: 1.0})
            train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images[:10000],
                                                      y: mnist.train.labels[:10000],
                                                      keep_prob: 1.0})
            print("Iter " + str(i) +
                  ", Testing Accuracy " + str(test_acc) +
                  ", Training Accuracy " + str(train_acc))
    

      

  • 相关阅读:
    关系抽取 ---远程监督 ---《Improving Distantly-Supervised Relation Extraction with Joint Label Embedding》
    关系抽取 ---远程监督 ---《Multi-Level Structured Self-Attentions for Distantly Supervised Relation Extraction》
    关系抽取 ---远程监督 (一种基于word-level的sentence内部去噪)---《Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learning》
    关系抽取 ---远程监督 ---《Ranking-Based Automatic Seed Selection and Noise Reduction for Weakly Supervised Relation Extraction》
    关系抽取 ---远程监督 ---《Distant Supervision for Relation Extraction with Sentence-Level Attention and Entity Descriptions》
    关系抽取 ---远程监督 ---《Robust Distant Supervision Relation Extraction via Deep Reinforcement Learning》
    Object类和对象类型转换
    通过使用5个开源的人脸识别项目来增加你的计算机视觉项目经历
    如何使用Python创建AI虚拟助手
    视觉测试工具箱
  • 原文地址:https://www.cnblogs.com/68xi/p/10571632.html
Copyright © 2020-2023  润新知