• 【数量关系】第十五节:边端问题


    边端问题的两类题型

      ①植树问题

      ②方阵问题

    线性植树:(两端不封闭)

      棵树 = 总长 ÷ 间距 + 1(算头算尾要加一)(总长 ÷ 间距 求出的是空数。100÷20=5个空)

      总长 = (棵树 - 1 )× 间距   (棵树比空数多一个。所以要减一)

    环形植树:

      棵树 = 总长 ÷ 间距  (棵树 = 空数)

    楼间植树:(两栋楼之间植树,相当于少了头尾两颗)

      棵树 = 总长 ÷ 间距 - 1  (不算头不算尾要减少一)

    方阵问题:

      每边人数 = 4边总人数÷ 4 + 1

      方阵的外层比里层每边多2人。

      方阵的外层比里层共多8人。

    例题:

    S01:某机构计划在一块边长为18米的正方形空地开展活动,需要在空地四边每隔2米插上一面彩旗,若该空地的四个角都需要插上彩旗,那么一共需要( )面彩旗。

        A. 32    B. 36   C. 44   D. 48

    S02:参加某运动会的全体运动员在开幕式上恰好排成一个正方形,有两行两列的运动员离场后,运动员人数减少64人,则参加该运动会的运动员人数为:

        A . 225   B . 256   C . 289   D . 324

    思路:

      两行两列要理解成最外圈的人。64÷4 + 1= 17*17 = 289

    L01:某条道路进行灯光增亮工程,原来间隔35米的路灯一共有21盏,现要将路灯的间隔缩短为25米,那么有( )盏路灯无需移动。

        A. 2   B. 3   C. 4   D. 5

    思路:

      不需移动的位置就是最小公倍数的位置,求最小公倍数

      700÷175 + 1 = 5

    L02:有绿、白两种颜色且尺寸相同的正方形瓷砖共400块。将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖……这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有( )块。

        A.180   B.196   C.210   D.220

    思路:

      400 = 20 * 20 ,这是一个20*20的正方形,最外层一共有20*4-4 = 76块砖。

      最外层和里层差8块,76 -> 口 -> 60 -> 44 -> 28 -> 12 ,相当于公差是16的等差数列。44*5 = 220

    补充:

      等差数列求和:,   首项末项的平均数

      求项数n:

           

      等比数列求和:

      求项数n:

      

      自然数列:1+2+...+n = n×(n+1) ÷2

    G01:一条笔直的林荫道两旁种植着梧桐树,同侧道路每两棵梧桐树间距50米。林某每天早上七点半穿过林荫道步行去上班,工作地点恰好在林荫道尽头。经测试,他每分钟步行70步,每步大约50厘米,每天早上八点准时到达工作地点。那么,这条林荫道两旁栽种的梧桐树共有多少棵?

        A.21  B.22  C.42  D.44

    思路:

      70*0.5*30 = 1050米,1050÷50 + 1 = 22 *2 = 44

    G02:某高中学校举行运动会,高一、高二、高三学生列成方队,每个年级队伍均为240人,分成6个竖列依次行进。高一队伍前后每人间隔1米,高二队伍前后每人间隔1.5米,高三队伍前后每人间隔2.5米。每个年级队伍之间间隔5米,所有年级队伍的行进速度均为60米每分钟,则三个年级队伍通过35米长的主席台需要(        )分钟。

        A.3   B.4   C.5   D.6

    思路:

      通过主席台 = 队伍长度 + 主席台长度

      40人 39个人空 -> (39*1 + 39*1.5 + 39*2.5 + 2*5 + 35) ÷ 60

    母题研究:

    1、某单位两座办公楼之间有一条长204米的道路,在道路起点的两侧和终点的两侧已栽种了一棵树。现在要在这条路的两侧栽种更多的树,使每一侧每两棵树之间的间隔不多于12米。如栽种每棵树需要50元人工费,则为完成栽种工作,在人工费这一项至少需要做多少预算?

        A.800元  B.1600元  C.1700元  D.1800元

    思路

      楼间植树问题,204÷12 - 1 = 17 -1 =16

    2、李大爷在马路边散步,路边均匀地栽着一行树,李大爷从第一棵树走到第15棵树共用了7分钟,李大爷又向前走了几棵树后就往回走,当他回到第5棵树时共用了30分钟。李大爷步行到第几棵树时就开始往回走?  

        A.32  B.35  C.34  D.33

    思路:

      第一棵走到第15棵一共有14个空,花了7分钟,所以1分钟走2个空。

      从第一棵树走到第x棵树,再从第x棵树走到第5棵树。

      走了 x-1个空 + x-5 个空。 (x-1)+(x-5) = 60 ,得x=33

    3、环保部门对一定时间内的河流水质进行采样,原计划每41分钟采样1次,但在实际采样过程中,第一次和最后一次采样的时间与原计划相同,每两次采样的间隔变成20分钟,采样次数比原计划增加了1倍。问实际采样次数是多少次?

        A.22  B.32  C.42  D.52

    思路:

      原计划每41分钟采样1次 = 间隔41米一棵树 ,第一次和最后一次采样的时间与原计划相同 = 马路长度不变,变成20米一棵树

      X - 1 = 空数,(X - 1) × 41 = (2X -1) × 20

    4、某条道路的一侧种植了25棵杨树,其中道路两端各种有一棵,且所有相邻的树距离相等。现在需要增种10棵树,且通过移动一部分树(不含首尾两棵)使所有相邻的树距离相等,则这25棵树中有多少棵不需要移动位置?

        A.3  B.4  C.5  D.6

    思路:

      25棵树 = 24个空,35棵树 = 34个空

      设马路长度 为24与34最小公倍数 = 408米。

      17米每棵,12米每棵。最小公倍数204米。408÷204 + 1 = 3 

    5、施工队要在一东西长600米的礼堂顶部沿东西方向安装一排吊灯,根据施工要求,必须在距西墙375米处安装一盏,并且各吊灯在东西墙之间均匀排列(墙角不能装灯)。该施工队至少需要安装多少盏吊灯?

        A.6  B.7  C.8  D.9

    思路:

      求375与225最大公约数:75。

      楼间植树问题 = 600 ÷ 75 -1

  • 相关阅读:
    数据类型
    32个关键字
    标识符
    Xcode常用快捷键
    Linux中级之keepalived配置
    linux中级之keepalived概念
    Linux中级之lvs三个模式的图像补充(nat,dr,tun)
    linux中级之防火墙的数据传输过程
    Linux中级之netfilter/iptables应用及补充
    linux中级之lvs配置(命令)
  • 原文地址:https://www.cnblogs.com/5poi/p/16663430.html
Copyright © 2020-2023  润新知