• 机器学习算法总结(一)


            感知机:这是最简单的一个机器学习算法,不过有几点还是要注意一下。

                       首先是损失函数的选取,还有为了使损失函数最小,迭代过程采用的梯度下降法,最后得到最优的w,b

                       直观解释就是,调整w,b的值,使分离超平面向误分类点移动,以减小误分点与超平面的距离,直至超平面

                 越过误分类点使其被正确分类。

           K近邻:

                   给定一个训练数据集,对新输入的实例,在训练数据集中找到与该实例最近的K个实例,这K个实例多数属于某个

             类,就把该输入实例分为某个类。

                  值得注意的是为了实现K近邻算法所采用的KD树。它是为了减小计算距离的次数所采用的一种特殊的存储结构。它的

            实现和搜索是要学会的。

        朴素贝叶斯:

                通过训练数据集学习联合概率分布,然后基于此模型,对给定的输入X,利用贝叶斯定理求出后验概率最大的输出Y。

                它的最大特点是,对条件概率分布作了条件独立性的假设,也就是说分类特征在类确定的条件下都是独立的。

        对回归方法的认识:   

               线性回归假设特征和结果满足线性关系。

               为了评估预测的好坏,我们定义了一个错误函数,通过使错误函数最小,来选取最优的参数值,需要注意的是,为什么要选取

          误差函数为平方和。

              为了使错误函数最小,可以采用:梯度下降法、最小二乘法 。

             分类和对数回归:

                   回归一般不用在分类问题上,因为回归是连续模型,而且受噪声影响较大。要想将其用于分类,需要引入对数回归。

                   对数回归: 本质上是线性回归,先把特征线性求和,然后使用一层映射函数来分类。

                   softmax回归:对数回归一般是针对二分类问题的,softmax回归可用于多类别。

                  

               

                  

     

  • 相关阅读:
    SuperSocket 1.4系列文档(16) 在SuperSocket中启用传输层加密(TLS/SSL)
    SuperSocket 1.4系列文档(10) SuperSocket中的日志功能
    UIPageControl实现自定义按钮
    ios 某些代码网址,app打包成ipa
    笔记隐藏状态栏,播放音乐,获取文件路径,nsthread,文件文件夹操作,plist 时间
    使用NSTimer实现倒计时,Iphone幻灯片效果+背景音乐,
    如何让你的iPhone程序支持多语言环境(本地化)
    iPhone电子书toolbar的实现
    iphone界面如何实现下拉列表
    使用NSTimer与iphone的简单动画,实现飘雪效果
  • 原文地址:https://www.cnblogs.com/573177885qq/p/4478255.html
Copyright © 2020-2023  润新知