• mmdetection:各种各样的anchor生成方式及其标签分配assigner(1)


    在anchor_generator.py中,集成了很多中anchor的生成方式,趁阅读源码mmdetection之际,对其进行一下总结

    (先总结下faster rcnn, yolov3, SSD,后续继续补充)

    一、anchor生成

             生成anchor的总体思路是,首先生成base_anchor,然后网格化(meshgrid)生成其他anchor。

            1、faster rcnn

                   faster rcnn的anchor生成是最经典的,其他anchor生成方式与之相比大同小异。在anchor_generator中,可以

    看到它是在没有使用for循环的情况下,如何生成的anchor的。

                  首先是base_anchor。以(0,0)为左上角,以(stride, stride)为基本(w, h),分别与scale,ratio计算得到的多个

    anchor。比如scale = [8, 16, 32](w,h的大小)  , ratios=[0.5, 1.0, 2.0](w和h的比例), 那就是生成9个anchor。

     1 def gen_single_level_base_anchors(self,
     2                                       base_size,
     3                                       scales,
     4                                       ratios,
     5                                       center=None):
     6         """Generate base anchors of a single level.
     7 
     8         Args:
     9             base_size (int | float): Basic size of an anchor.
    10             scales (torch.Tensor): Scales of the anchor.
    11             ratios (torch.Tensor): The ratio between between the height
    12                 and width of anchors in a single level.
    13             center (tuple[float], optional): The center of the base anchor
    14                 related to a single feature grid. Defaults to None.
    15 
    16         Returns:
    17             torch.Tensor: Anchors in a single-level feature maps.
    18         """
    19         w = base_size
    20         h = base_size
    21         if center is None:
    22             x_center = self.center_offset * w
    23             y_center = self.center_offset * h
    24         else:
    25             x_center, y_center = center
    26 
    27         h_ratios = torch.sqrt(ratios)
    28         w_ratios = 1 / h_ratios
    29         if self.scale_major:
    30             ws = (w * w_ratios[:, None] * scales[None, :]).view(-1)
    31             hs = (h * h_ratios[:, None] * scales[None, :]).view(-1)
    32         else:
    33             ws = (w * scales[:, None] * w_ratios[None, :]).view(-1)
    34             hs = (h * scales[:, None] * h_ratios[None, :]).view(-1)
    35 
    36         # use float anchor and the anchor's center is aligned with the
    37         # pixel center
    38         base_anchors = [
    39             x_center - 0.5 * ws, y_center - 0.5 * hs, x_center + 0.5 * ws,
    40             y_center + 0.5 * hs
    41         ]
    42         base_anchors = torch.stack(base_anchors, dim=-1)
    43 
    44         return base_anchors

              有了base_anchor,那就只需在其他位置上,对base_anchor进行相应的偏移即可。因此,先通过meshgrid,生成各个位置,然后加上base_anchor。

     1 def _meshgrid(self, x, y, row_major=True):
     2         """Generate mesh grid of x and y.
     3 
     4         Args:
     5             x (torch.Tensor): Grids of x dimension.
     6             y (torch.Tensor): Grids of y dimension.
     7             row_major (bool, optional): Whether to return y grids first.
     8                 Defaults to True.
     9 
    10         Returns:
    11             tuple[torch.Tensor]: The mesh grids of x and y.
    12         """
    13         xx = x.repeat(len(y))
    14         yy = y.view(-1, 1).repeat(1, len(x)).view(-1)
    15         if row_major:
    16             return xx, yy
    17         else:
    18             return yy, xx
    19 
    20 def single_level_grid_anchors(self,
    21                                   base_anchors,
    22                                   featmap_size,
    23                                   stride=(16, 16),
    24                                   device='cuda'):
    25         """Generate grid anchors of a single level.
    26 
    27         Note:
    28             This function is usually called by method ``self.grid_anchors``.
    29 
    30         Args:
    31             base_anchors (torch.Tensor): The base anchors of a feature grid.
    32             featmap_size (tuple[int]): Size of the feature maps.
    33             stride (tuple[int], optional): Stride of the feature map in order
    34                 (w, h). Defaults to (16, 16).
    35             device (str, optional): Device the tensor will be put on.
    36                 Defaults to 'cuda'.
    37 
    38         Returns:
    39             torch.Tensor: Anchors in the overall feature maps.
    40         """
    41         feat_h, feat_w = featmap_size
    42         # convert Tensor to int, so that we can covert to ONNX correctlly
    43         feat_h = int(feat_h)
    44         feat_w = int(feat_w)
    45         shift_x = torch.arange(0, feat_w, device=device) * stride[0]
    46         shift_y = torch.arange(0, feat_h, device=device) * stride[1]
    47 
    48         shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
    49         shifts = torch.stack([shift_xx, shift_yy, shift_xx, shift_yy], dim=-1)
    50         shifts = shifts.type_as(base_anchors)
    51         # first feat_w elements correspond to the first row of shifts
    52         # add A anchors (1, A, 4) to K shifts (K, 1, 4) to get
    53         # shifted anchors (K, A, 4), reshape to (K*A, 4)
    54 
    55         all_anchors = base_anchors[None, :, :] + shifts[:, None, :]
    56         all_anchors = all_anchors.view(-1, 4)
    57         # first A rows correspond to A anchors of (0, 0) in feature map,
    58         # then (0, 1), (0, 2), ...
    59         return all_anchors

                 2、yolov2&yolov3

                      和faster rcnn的不同就是base_anchor。yolo的base_anchor是通过对数据集聚类得到的。如下,可以看到这里不需要在去

    计算scale和ratio,剩下的就是网格化生成其余anchor。

     1 def gen_single_level_base_anchors(self, base_sizes_per_level, center=None):
     2         """Generate base anchors of a single level.
     3 
     4         Args:
     5             base_sizes_per_level (list[tuple[int, int]]): Basic sizes of
     6                 anchors.
     7             center (tuple[float], optional): The center of the base anchor
     8                 related to a single feature grid. Defaults to None.
     9 
    10         Returns:
    11             torch.Tensor: Anchors in a single-level feature maps.
    12         """
    13         x_center, y_center = center
    14         base_anchors = []
    15         for base_size in base_sizes_per_level:
    16             w, h = base_size
    17 
    18             # use float anchor and the anchor's center is aligned with the
    19             # pixel center
    20             base_anchor = torch.Tensor([
    21                 x_center - 0.5 * w, y_center - 0.5 * h, x_center + 0.5 * w,
    22                 y_center + 0.5 * h
    23             ])
    24             base_anchors.append(base_anchor)
    25         base_anchors = torch.stack(base_anchors, dim=0)
    26 
    27         return base_anchors 

                3、SSD

                             SSD也类似,不同的地方就是anchor的尺度不再是固定的,而是变化的(参考论文给的尺度公式):随着特征图减小,尺度逐渐增大(感受野大,anchor也要大)。

               剩下的就和faster rcnn一样了。参考https://zhuanlan.zhihu.com/p/33544892

     1 # 计算出在原图上,anchor大小(单边为60, 111, 162, 213, 264)
     2         min_sizes = []
     3         max_sizes = []
     4         for ratio in range(int(min_ratio), int(max_ratio) + 1, step):
     5             min_sizes.append(int(self.input_size * ratio / 100))
     6             max_sizes.append(int(self.input_size * (ratio + step) / 100))
     7 
     8         # anchor再增加一个尺度30   
     9         if self.input_size == 300:
    10             if basesize_ratio_range[0] == 0.15:  # SSD300 COCO
    11                 min_sizes.insert(0, int(self.input_size * 7 / 100))
    12                 max_sizes.insert(0, int(self.input_size * 15 / 100))
    13 
    14 # 计算其 scale ratio
    15 anchor_ratios = []
    16         anchor_scales = []
    17         for k in range(len(self.strides)):
    18             scales = [1., np.sqrt(max_sizes[k] / min_sizes[k])]
    19             anchor_ratio = [1.]
    20             for r in ratios[k]:
    21                 anchor_ratio += [1 / r, r]  # 4 or 6 ratio
    22             anchor_ratios.append(torch.Tensor(anchor_ratio))
    23             anchor_scales.append(torch.Tensor(scales))

    二、anchor assigner

              生成了anchor之后,要对其打标签,看看哪些是正样本,哪些是负样本。

              1、MaxIouAssigner

                     SSD和faseter rcnn采用的方式,计算anchor与GT的IOU。对每个anchor,如果其IOU>pos_thread,则为正样本,如果IOU<neg_thread,则为背景类;此外,

            在代码中还有一段细节。在上述策略中,有些GT可能没有匹配到任何的anchor,因此添加了一个补救措施来扩充正样本:遍历每一个GT,

           查看iou最大的anchor,如果最大iou>pos_min_iou,那就标记为正样本。注意:这个其实并不能保证每个GT一定有anchor(跟GT遍历顺序有关),

            并且会引入一些不太好的正样本,因此效果并不一定好。这边博客举了一个不错的例子

             目标检测(MMdetection)——Retina(Anchor、Focal Loss) - 知乎 (zhihu.com)

     1 if self.match_low_quality:
     2             # Low-quality matching will overwirte the assigned_gt_inds assigned
     3             # in Step 3. Thus, the assigned gt might not be the best one for
     4             # prediction.
     5             # For example, if bbox A has 0.9 and 0.8 iou with GT bbox 1 & 2,
     6             # bbox 1 will be assigned as the best target for bbox A in step 3.
     7             # However, if GT bbox 2's gt_argmax_overlaps = A, bbox A's
     8             # assigned_gt_inds will be overwritten to be bbox B.
     9             # This might be the reason that it is not used in ROI Heads.
    10             for i in range(num_gts):
    11                 if gt_max_overlaps[i] >= self.min_pos_iou:
    12                     if self.gt_max_assign_all:
    13                         max_iou_inds = overlaps[i, :] == gt_max_overlaps[i]
    14                         assigned_gt_inds[max_iou_inds] = i + 1
    15                     else:
    16                         assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1

           2、GridAssigner

                  YOLO采用的方式,同样先计算anchor与GT的IOU。负样本标记方式相同,不同的是正样本。对于每个anchor,其最近网格的IOU>pos_thread并且其中心落入

         该网格,则该anchor为正样本;对于每个GT,将其最近的anchor,赋值给该GT最近的格子。这就意味着,每个GT,其实只有一个正样本。

    三、box编码

             在训练过程中,并非直接使用GT和anchor的坐标直接训练,为了加速收敛,会对其进行编码,编码的方式略有不同。

                这部分参考史上最详细的Yolov3边框预测分析_逍遥王的博客-CSDN博客

                 

                                           

  • 相关阅读:
    Ionic2 自学须知的基本知识点
    Ionic2 启动加载优化总结
    Ionic2使用TypeScript调用自定义JavaScript脚本
    GPS坐标转百度地图坐标
    友情链接
    Python学习之路目录(收藏整理)
    基于Docker构建Jenkins CI平台
    KeepLived + nginx 高可用
    k8s-1.16 二进制安装
    Ansible自动化部署K8S集群
  • 原文地址:https://www.cnblogs.com/573177885qq/p/14362449.html
Copyright © 2020-2023  润新知