分析乒乓球比赛所设计出的代码:
from random import random def printIntro(): print("这个程序模拟两个选手A和B的某种比赛") print("程序运行需要A和B的能力值(0到1之间)") def getInputs(): a=eval(input("请输入选手A的能力值(0-1):")) b=eval(input("请输入选手B的能力值(0-1):")) n=eval(input("模拟比赛的场次:")) return a,b,n def simNGames(n,probA,probB): winsA,winsB=0,0 for i in range(n): scoreA,scoreB=simOneGame(probA,probB) if scoreA>scoreB: winsA+=1 else: winsB+=1 return winsA,winsB def gameOver(a,b): return a==11 or b==11 def simOneGame(probA,probB): scoreA,scoreB = 0,0 serving = 'A' while not gameOver(scoreA,scoreB): if serving == 'A': if random()<probA: scoreA+=1 else: serving='B' else: if random()<probB: scoreB+=1 else: serving='A' return scoreA,scoreB def printSummary(winsA,winsB): n=winsA+winsB print("竞技分析开始,共模拟{}场比赛".format(n)) print("选手A获胜{}场比赛,占比{:.1%}".format(winsA,winsA/n)) print("选手B获胜{}场比赛,占比{:.1%}".format(winsB,winsB/n)) def main(): printIntro() probA,probB,n = getInputs() winsA,winsB = simNGames(n,probA,probB) printSummary(winsA,winsB) main()
根据以上的代码我们整理一下思路,这是一段通过“顶层设计”编写出来的代码,通过一些封装,我们对不同的动作进行解释
我们了解到一局乒乓球比赛的规则是,发球方发球,进行“两球制”发球,即两人固定轮流连续开两球,不论胜负,谁分数先到达11分即胜利
由于还有考虑最后平手时加球的情况,但上述代码暂不考虑,所以我们来看看代码的运算效果:
输入两个选手的能力值,我设置为各0.5,但结果虽较接近但还是有些许差距,排除random()的误差,我们知道这是比较符合现实的一种情况!
我们再试试能力值有细微差距的情况:
wow!看来仅仅只是一点点的实力差距就会有天壤之别的比赛结果……
我们再深入分析,加入更多的因素,我们知道乒乓球的赛制时单打七局四胜制,双打则是五局三胜制,所以我们先用以下代码预测单打情况:
from random import random def printIntro(): print("这个程序模拟两个选手A和B的某种比赛") print("程序运行需要A和B的能力值(0到1之间)") def getInputs(): a=eval(input("请输入选手A的能力值(0-1):")) b=eval(input("请输入选手B的能力值(0-1):")) return a,b def simNGames(probA,probB): winsA,winsB=0,0 for i in range(7): scoreA,scoreB=simOneGame(probA,probB) if scoreA>scoreB: winsA+=1 if winsA==4: break else: winsB+=1 if winsB==4: break return winsA,winsB def gameOver(a,b): return a==11 or b==11 def simOneGame(probA,probB): scoreA,scoreB = 0,0 serving = 'A' while not gameOver(scoreA,scoreB): if serving == 'A': if random()<probA: scoreA+=1 else: serving='B' else: if random()<probB: scoreB+=1 else: serving='A' return scoreA,scoreB def printSummary(winsA,winsB): n=winsA+winsB print("竞技分析开始,共模拟{}场比赛".format(n)) print("选手A获胜{}场比赛,占比{:.1%}".format(winsA,winsA/n)) print("选手B获胜{}场比赛,占比{:.1%}".format(winsB,winsB/n)) def main(): printIntro() probA,probB = getInputs() winsA,winsB = simNGames(probA,probB) printSummary(winsA,winsB) main()
我们再试试结果:
我们看到,A选手最终以4-2击败B选手,即使他们能力几乎相当,也许他当下更有手感吧~
接下来是双打时,我们将刚刚的A/B选手抽象为A/B队伍,能力值为队伍的平均能力值。
from random import random def printIntro(): print("这个程序模拟两个选手A和B的某种比赛") print("程序运行需要A和B的能力值(0到1之间)") def getInputs(): a=eval(input("请输入选手A的能力值(0-1):")) b=eval(input("请输入选手B的能力值(0-1):")) return a,b def simNGames(probA,probB): winsA,winsB=0,0 for i in range(5): scoreA,scoreB=simOneGame(probA,probB) if scoreA>scoreB: winsA+=1 if winsA==3: break else: winsB+=1 if winsB==3: break return winsA,winsB def gameOver(a,b): return a==11 or b==11 def simOneGame(probA,probB): scoreA,scoreB = 0,0 serving = 'A' while not gameOver(scoreA,scoreB): if serving == 'A': if random()<probA: scoreA+=1 else: serving='B' else: if random()<probB: scoreB+=1 else: serving='A' return scoreA,scoreB def printSummary(winsA,winsB): n=winsA+winsB print("竞技分析开始,共模拟{}场比赛".format(n)) print("选手A获胜{}场比赛,占比{:.1%}".format(winsA,winsA/n)) print("选手B获胜{}场比赛,占比{:.1%}".format(winsB,winsB/n)) def main(): printIntro() probA,probB = getInputs() winsA,winsB = simNGames(probA,probB) printSummary(winsA,winsB) main()
结果:A队伍以3-2赢得双打比赛~
接下来我们分析篮球赛事,我们知道篮球是一项团队的运动,所以左右比赛的走向的的变量更加多首先是运动员的人数较多,场上每一队应该有5名队员在场,场下有4-5名替补队员,这样加起来双方队伍参赛队员将在14-20个,同时能力值有不同,且若精确到每一次进攻,那么就会有进攻成功及进攻失败,或进攻一次伴随着抢板之后再次补篮等多种复杂情况……由于现实的多变性,考虑到本次只是简单的模拟,我对现实进行理想化,只讨论场上每队主力5名队员的能力值,并通过各值推出该队平均能力值,由于篮球比赛以时间作为指标,在指定时间内获得分数最高者胜,所以我们将其简化为:在一定时间内,只能有有限次的进攻次数,根据现实情况,我们设置为:200次(双方进攻总数),于是有了下面的代码:
from random import random import time as T def printIntro(): print("这个程序模拟两支球队A和B的篮球比赛") print("程序运行需要A队和B队的能力值(0到1之间)") def getInputs(): print("现在请分别输入A队中上场的五位球员的能力值") a=eval(input("请输入选手1的能力值(0-1):")) b=eval(input("请输入选手2的能力值(0-1):")) c=eval(input("请输入选手3的能力值(0-1):")) d=eval(input("请输入选手4的能力值(0-1):")) e=eval(input("请输入选手5的能力值(0-1):")) print("现在请分别输入B队中上场的五位球员的能力值") f=eval(input("请输入选手6的能力值(0-1):")) g=eval(input("请输入选手7的能力值(0-1):")) h=eval(input("请输入选手8的能力值(0-1):")) i=eval(input("请输入选手9的能力值(0-1):")) j=eval(input("请输入选手10的能力值(0-1):")) meanA=(a+b+c+d+e)/5 meanB=(f+g+h+i+j)/5 print("A队的平均能力值为{0},B队的平均能力值为{1}".format(meanA,meanB)) return meanA,meanB def simOneAttack(probA,probB,): scoreA,scoreB = 0,0 serving = 'A' for i in range(200): if serving == 'A': if random()<probA: scoreA+=2 else: serving='B' else: if random()<probB: scoreB+=2 else: serving='A' print("最终A队得分为{0},B队为{1}".format(scoreA,scoreB)) print("队伍A获胜概率为{:.1%}".format(scoreA/200)) print("队伍B获胜概率为{:.1%}".format(scoreB/200)) print("平手概率(不加时):{:.1%}".format(1-(scoreA/200)-(scoreB/200))) return scoreA,scoreB def main(): printIntro() probA,probB = getInputs() print("竞技分析开始,共模拟200次进攻") simOneAttack(probA,probB) main()
结果如下图:
分别输入各个队伍主力球员的能力值,求出各队伍平均能力值,并最终预测比赛得分为:A:B=86:110
这是我们预测了一次比赛的结果。
我们继续分析,在NBA的规则中,需要先在本土30支队伍中通过进行82场常规赛决出8强,于是我们对其进行变体来预测A/B两支队伍进行多场比赛后的结果:
from random import random import time as T def printIntro(): print("这个程序模拟两支球队A和B的篮球比赛") print("程序运行需要A队和B队的能力值(0到1之间)") def getInputs(): print("现在请分别输入A队中上场的五位球员的能力值") a=eval(input("请输入选手1的能力值(0-1):")) b=eval(input("请输入选手2的能力值(0-1):")) c=eval(input("请输入选手3的能力值(0-1):")) d=eval(input("请输入选手4的能力值(0-1):")) e=eval(input("请输入选手5的能力值(0-1):")) print("现在请分别输入B队中上场的五位球员的能力值") f=eval(input("请输入选手6的能力值(0-1):")) g=eval(input("请输入选手7的能力值(0-1):")) h=eval(input("请输入选手8的能力值(0-1):")) i=eval(input("请输入选手9的能力值(0-1):")) j=eval(input("请输入选手10的能力值(0-1):")) meanA=(a+b+c+d+e)/5 meanB=(f+g+h+i+j)/5 print("A队的平均能力值为{0},B队的平均能力值为{1}".format(meanA,meanB)) return meanA,meanB def simNGames(probA,probB): winsA,winsB=0,0 for i in range(82): scoreA,scoreB=simOneAttack(probA,probB) if scoreA>scoreB: winsA+=1 else: winsB+=1 print("最终A队得分为{0},B队为{1}".format(scoreA,scoreB)) return winsA,winsB def simOneAttack(probA,probB,): scoreA,scoreB = 0,0 serving = 'A' for i in range(200): if serving == 'A': if random()<probA: scoreA+=2 else: serving='B' else: if random()<probB: scoreB+=2 else: serving='A' return scoreA,scoreB def printSummary(winsA,winsB): n=winsA+winsB print("竞技分析开始,共模拟{}场比赛".format(82)) print("队伍A获胜{}场比赛,占比{:.1%}".format(winsA,winsA/n)) print("队伍B获胜{}场比赛,占比{:.1%}".format(winsB,winsB/n)) def main(): printIntro() probA,probB = getInputs() print("竞技分析开始,共模拟200次进攻") simOneAttack(probA,probB) winsA,winsB = simNGames(probA,probB) printSummary(winsA,winsB) main()
结果: