链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4199
题意:给出若干个正方形,求出他们的顶点中距离最大的两个点间的距离的平方。
思路:很直接的求点集的直径,采用旋转卡壳算法。算法参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; const int maxn=1000000; const double eps=1e-8; struct Point { int x,y; Point(int x=0,int y=0):x(x),y(y) {} }p[maxn],ch[maxn]; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); } Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); } int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0?-1:1; } bool operator == (const Point& a,const Point& b)//两点相等 { return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; } double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; } int dist2(Point a,Point b) { return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } int cmp(const Point &a,const Point &b) { if(a.x<b.x) return 1; else if(a.x==b.x) { if(a.y<b.y) return 1; else return 0; } else return 0; } int ConvexHull(Point *p,int n,Point *ch) { sort(p,p+n,cmp); n=unique(p,p+n)-p;//去重 int m=0; for(int i=0;i<n;i++) { while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2]) <= 0) m--; ch[m++]=p[i]; } int k=m; for(int i=n-2;i>=0;i--) { while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2]) <= 0) m--; ch[m++]=p[i]; } if(n>1) m--; return m; } int RotatingCalipers(Point *ch,int n)//计算凸包直径,凸包顶点数组ch,顶点个数n,按逆时针排列,输出直径的平方 { int q=1; int ans=0; ch[n]=ch[0]; for(int p=0;p<n;p++) { while(Cross(ch[p+1]-ch[p],ch[q+1]-ch[p])>Cross(ch[p+1]-ch[p],ch[q]-ch[p])) q=(q+1)%n; ans=max(ans,max(dist2(ch[p],ch[q]),dist2(ch[p+1],ch[q+1]))); } return ans; } int main() { //freopen("ine.cpp","r",stdin); int t; scanf("%d",&t); while(t--) { int n,k=0; scanf("%d",&n); while(n--) { int x,y,w; scanf("%d%d%d",&x,&y,&w); p[k++]=Point(x,y); p[k++]=Point(x+w,y); p[k++]=Point(x,y+w); p[k++]=Point(x+w,y+w); } int m=ConvexHull(p,k,ch); int ans=RotatingCalipers(ch,m); printf("%d ",ans); } return 0; }