• 动手学pytorch-机器翻译


    动手学pytorch-机器翻译

    1. 机器翻译与数据集
    2. Encoder Decoder
    3. Sequence to Sequence
    4. 实验

    1. 机器翻译与数据集

    机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。
    主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。
    数据集采用 http://www.manythings.org/anki/ 的fra-eng数据集

    1.1数据集预处理

    #数据字典 char to index and index to char
    class Vocab(object):
        def __init__(self, tokens, min_freq=0, use_special_tokens=False):
            counter = collections.Counter(tokens)
            self.token_freqs = list(counter.items())
            self.idx_to_token = []
            if use_special_tokens:
                # padding, begin of sentence, end of sentence, unknown
                self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
                self.idx_to_token += ['', '', '', '']
            else:
                self.unk = 0
                self.idx_to_token += ['']
            self.idx_to_token += [token for token, freq in self.token_freqs
                            if freq >= min_freq and token not in self.idx_to_token]
            self.token_to_idx = dict()
            for idx, token in enumerate(self.idx_to_token):
                self.token_to_idx[token] = idx
    
        def __len__(self):
            return len(self.idx_to_token)
    
        def __getitem__(self, tokens):
            if not isinstance(tokens, (list, tuple)):
                return self.token_to_idx.get(tokens, self.unk)
            return [self.__getitem__(token) for token in tokens]
    
        def to_tokens(self, indices):
            if not isinstance(indices, (list, tuple)):
                return self.idx_to_token[indices]
            return [self.idx_to_token[index] for index in indices]
    
    #数据清洗, tokenize, 建立数据字典
    class TextPreprocessor():
        def __init__(self, text, num_lines):
            self.num_lines = num_lines
            text = self.clean_raw_text(text)
            self.src_tokens, self.tar_tokens = self.tokenize(text)
            self.src_vocab = self.build_vocab(self.src_tokens)
            self.tar_vocab = self.build_vocab(self.tar_tokens)
        
        def clean_raw_text(self, text):
            text = text.replace('u202f', ' ').replace('xa0', ' ')
            out = ''
            for i, char in enumerate(text.lower()):
                if char in (',', '!', '.') and i > 0 and text[i-1] != ' ':
                    out += ' '
                out += char
            return out
            
        def tokenize(self, text):
            sources, targets = [], []
            for i, line in enumerate(text.split('
    ')):
                if i > self.num_lines:
                    break
                parts = line.split('	')
                if len(parts) >= 2:
                    sources.append(parts[0].split(' '))
                    targets.append(parts[1].split(' '))
            return sources, targets
            
        def build_vocab(self, tokens):
            tokens = [token for line in tokens for token in line]
            return Vocab(tokens, min_freq=3, use_special_tokens=True)
    
    

    1.2 创建dataloader

    # pad, 构建数据dataset, 创建dataloader
    class TextUtil():
        def __init__(self, tp, max_len):
            self.src_vocab, self.tar_vocab = tp.src_vocab, tp.tar_vocab
            src_arr, src_valid_len = self.build_array(tp.src_tokens, tp.src_vocab, max_len = max_len, padding_token = tp.src_vocab.pad, is_source=True)
            tar_arr, tar_valid_len = self.build_array(tp.tar_tokens, tp.tar_vocab, max_len = max_len, padding_token = tp.tar_vocab.pad, is_source=False)
            self.dataset = torch.utils.data.TensorDataset(src_arr, src_valid_len, tar_arr, tar_valid_len)
            
        def build_array(self,lines, vocab, max_len, padding_token, is_source):
            def _pad(line):
                if len(line) > max_len:
                    return line[:max_len]
                else:
                    return line + (max_len - len(line)) * [padding_token]
            lines = [vocab[line] for line in lines]
            if not is_source:
                lines = [[vocab.bos] + line + [vocab.eos] for line in lines]
            arr = torch.tensor([_pad(line) for line in lines])
            valid_len = (arr != vocab.pad).sum(1)
            return arr, valid_len
            
        def load_data_nmt(self, batch_size):
            train_loader = torch.utils.data.DataLoader(self.dataset, batch_size, shuffle = True)
            return self.src_vocab, self.tar_vocab, train_loader
    

    2. Encoder Decoder

    encoder:输入到隐藏状态
    decoder:隐藏状态到输出

    Image Name

    3. Sequence to Sequence

    3.1 结构

    训练
    Image Name
    预测

    Image Name

    具体结构:
    Image Name

    3.2 代码实现

    class Encoder(nn.Module):
        def __init__(self,**kwargs):
            super(Encoder, self).__init__(**kwargs)
        
        def forward(self, X, *args):
            raise NotImplementedError
        
    class Decoder(nn.Module):
        def __init__(self, **kwargs):
            super(Decoder, self).__init__(**kwargs)
        
        def init_state(self, encoded_state, *args):
            raise NotImplementedError
            
        def forward(self, X, state):
            raise NotImplementedError
    
    class EncoderDecoder(nn.Module):
        def __init__(self, encoder, decoder, **kwargs):
            super(EncoderDecoder, self).__init__(**kwargs)
            self.encoder = encoder
            self.decoder = decoder
            
        def forward(self, enc_X, dec_X, *args):
            encoded_state = self.encoder(enc_X, *args)[1]
            decoded_state = self.decoder.init_state(encoded_state, *args)
            return self.decoder(dec_X, decoded_state)
    
    class Seq2SeqEncoder(Encoder):
        def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
            super(Seq2SeqEncoder, self).__init__(**kwargs)
            self.num_hiddens = num_hiddens
            self.num_layers = num_layers
            self.embedding = nn.Embedding(vocab_size, embed_size)
            self.rnn = nn.LSTM(embed_size, num_hiddens, num_layers, dropout=dropout)
        
        def begin_state(self, batch_size, device):
            H = torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens),  device=device)
            C = torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens),  device=device)
            return (H, C)
        
        def forward(self, X, *args):
            X = self.embedding(X)
            X = X.transpose(0, 1)
            out, state = self.rnn(X)
            return out, state
            
    class Seq2SeqDecoder(Decoder):
        def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
            super(Seq2SeqDecoder, self).__init__(**kwargs)
            self.embedding = nn.Embedding(vocab_size, embed_size)
            self.rnn = nn.LSTM(embed_size, num_hiddens, num_layers, dropout=dropout)
            self.dense = nn.Linear(num_hiddens, vocab_size)
            
        def init_state(self, encoded_state, *args):
            return encoded_state
        
        def forward(self, X, state):
            X = self.embedding(X).transpose(0, 1)
            out, state = self.rnn(X, state)
            out = self.dense(out).transpose(0, 1)
            return out, state
    
    def grad_clipping(params, theta, device):
        """Clip the gradient."""
        norm = torch.tensor([0], dtype=torch.float32, device=device)
        for param in params:
            norm += (param.grad ** 2).sum()
        norm = norm.sqrt().item()
        if norm > theta:
            for param in params:
                param.grad.data.mul_(theta / norm)
    
    def grad_clipping_nn(model, theta, device):
        """Clip the gradient for a nn model."""
        grad_clipping(model.parameters(), theta, device)
        
    
    class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
        def get_mask(self, X, valid_len, value=0):
            max_len = X.size(1)
            mask = torch.arange(max_len)[None, :].to(valid_len.device) < valid_len[:, None]
            X[~mask] = value
            return X
        
        def forward(self, pred, label, valid_len):
            weights = torch.ones_like(label)
            weights = self.get_mask(weights, valid_len)
            self.reduction = 'none'
            output = super(MaskedSoftmaxCELoss, self).forward(pred.transpose(1,2), label)
            return (output * weights).mean(dim=1)
            
    

    4. 实验

    #训练函数
    def train(model, data_iter, lr, num_epochs, device):  # Saved in d2l
        model.to(device)
        optimizer = optim.Adam(model.parameters(), lr=lr)
        loss = MaskedSoftmaxCELoss()
        tic = time.time()
        for epoch in range(1, num_epochs+1):
            l_sum, num_tokens_sum = 0.0, 0.0
            for batch in data_iter:
                optimizer.zero_grad()
                X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch]
                Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1
                
                Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
                l = loss(Y_hat, Y_label, Y_vlen).sum()
                l.backward()
    
                with torch.no_grad():
                    grad_clipping_nn(model, 5, device)
                num_tokens = Y_vlen.sum().item()
                optimizer.step()
                l_sum += l.sum().item()
                num_tokens_sum += num_tokens
            if epoch % 10 == 0:
                print("epoch {0:4d},loss {1:.3f}, time {2:.1f} sec".format( 
                      epoch, (l_sum/num_tokens_sum), time.time()-tic))
                tic = time.time()
    
    #测试函数
    def translate(model, src_sentence, src_vocab, tgt_vocab, max_len, device):
        src_tokens = src_vocab[src_sentence.lower().split(' ')]
        src_len = len(src_tokens)
        if src_len < max_len:
            src_tokens += [src_vocab.pad] * (max_len - src_len)
        enc_X = torch.tensor(src_tokens, device=device)
        enc_valid_length = torch.tensor([src_len], device=device)
        # use expand_dim to add the batch_size dimension.
        encoded_state = model.encoder(enc_X.unsqueeze(dim=0), enc_valid_length)[1]
        dec_state = model.decoder.init_state(encoded_state, enc_valid_length)
        dec_X = torch.tensor([tgt_vocab.bos], device=device).unsqueeze(dim=0)
        predict_tokens = []
        for _ in range(max_len):
            Y, dec_state = model.decoder(dec_X, dec_state)
            # The token with highest score is used as the next time step input.
            dec_X = Y.argmax(dim=2)
            py = dec_X.squeeze(dim=0).int().item()
            if py == tgt_vocab.eos:
                break
            predict_tokens.append(py)
        return ' '.join(tgt_vocab.to_tokens(predict_tokens))
    
    embed_size, num_hiddens, num_layers, dropout = 256, 256, 2, 0.3
    batch_size, num_examples, max_len = 256, 5e4, 10
    lr, num_epochs = 0.005, 300
    tp = TextPreprocessor(raw_text, num_lines=num_examples)
    tu = TextUtil(tp, max_len = max_len)
    src_vocab, tar_vocab, train_loader = tu.load_data_nmt(batch_size = batch_size)
    encoder = Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
    decoder = Seq2SeqDecoder(len(tar_vocab), embed_size, num_hiddens, num_layers, dropout)
    model = EncoderDecoder(encoder, decoder)
    train_ch7(model, train_loader, lr, num_epochs, device=device)
    
    for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
        print(sentence + ' => ' + translate_ch7(
            model, sentence, src_vocab, tgt_vocab, max_len, ctx))
    
    Go . => va !
    Wow ! => <unk> !
    I'm OK . => ça va .
    I won ! => j'ai gagné !
    
  • 相关阅读:
    CSS颜色代码大全
    swfuploadphp上传说明
    projectlocker 使用
    十大简单易用的免费在线HTML编辑器
    c#读取docx(ooxml)
    直接在网页上显示word2007文档
    树莓派4b noMachine远程连接4000端口问题
    visual studio问题集合
    设置TrackMouseEvent捕获WM_MOUSEHOVER和WM_MOUSELEAVE消息
    atlwin中不停发WM_PAINT消息原因分析
  • 原文地址:https://www.cnblogs.com/54hys/p/12316055.html
Copyright © 2020-2023  润新知