1. 定义二维数组
a = [[0] * 3 for i in range(3)]
2. 求两个集合的笛卡尔积
import itertools as it a = [1,2,3] b = [4,5,6] for c in it.product(a,b): print(c)
3.推导式
variable = [out_exp_res for out_exp in input_list if out_exp == 2] out_exp_res: 列表生成元素表达式,可以是有返回值的函数。 for out_exp in input_list: 迭代input_list将out_exp传入out_exp_res表达式中。 if out_exp == 2: 根据条件过滤哪些值可以。
#example
def squared(x):
return x*x
multiples = [squared(i) for i in range(30) if i % 3 is 0]
print multiples
# Output: [0, 9, 36, 81, 144, 225, 324, 441, 576, 729]
4.求两序列的相关系数
import pandas as pd src = r'datafill.csv' data = pd.read_csv(src, parse_dates=[0],index_col='TIME') print(data[['zhexi_in','xiaoxi_out','zhexi_add','xinhua_add','lengshuijiang_add']].corr()['zhexi_in']) #result ##zhexi_in 1.000000 ##xiaoxi_out 0.806205 ##zhexi_add 0.145267 ##xinhua_add 0.165155 ##lengshuijiang_add 0.117305 ##Name: zhexi_in, dtype: float64
5. 画3D图
from matplotlib import pyplot as plt from matplotlib.pylab import rcParams rcParams['figure.figsize'] = 15, 9 from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') x = np.arange(1024) y = np.arange(1024) z = np.random.rand(1024) ax.scatter(x,np.zeros(1024),z,color = '#00CED1' , alpha = 0.2 , label = 'DDDDD') ax.plot(x,np.zeros(1024)+1,z,color = '#0567D1' , alpha = 0.2 , label = 'DDDDD') ax.text(0,0,0,'DDDDDD',color='r',ha='center', va='bottom', fontsize=10) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z)') plt.show() plt.close()
6. 随机得到训练集和测试集
from sklearn.model_selection import train_test_split
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.1,random_state=self.get_random_state()) # random_state用于设置随机数种子,test_size为测试集的大小
7.求均方误差MSE
from sklearn.metrics import mean_squared_error mse = mean_squared_error(predict,test_y)
8.一些可以解决回归问题的算法
from sklearn import linear_model as lm
import xgboost as xgb
from sklearn import ensemble
def set_models(self): self.models = { 'BayesianRidge':lm.BayesianRidge(), 'LinearRegression':lm.LinearRegression(), 'Ridge':lm.Ridge(), 'Lasso':lm.Lasso(), 'LassoLars':lm.LassoLars(), 'GradientBoostingRegressor':ensemble.GradientBoostingRegressor(), 'BaggingRegressor':ensemble.BaggingRegressor(), 'RandomForestRegressor':ensemble.RandomForestRegressor(criterion='mse'), 'ensemble.AdaBoostRegressor':ensemble.AdaBoostRegressor(), 'XGBRegressor':xgb.XGBRegressor(n_estimators=230, min_child_weight=2) }
9.获取字符的assic码
ord('a') #结果为97
10.在本地建文件夹
import os if not os.path.exists(self.result_path + name +'/non_add_rain/'): os.makedirs(self.result_path + name +'/non_add_rain/')
listglob = glob.glob(r"/home/xxx/picture/*.png") #通配符,找到所有满足条件的文件
file_name = os.path.basename(r"/home/xxx/picture/hello.png") #file_name = 'hello.png'
prefix,suffix = os.path.splitext(file_name) #'hello' 'png'