• poj 2976 Dropping tests


    Dropping tests
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 4559   Accepted: 1542

    Description

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

    .

    Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

    Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

    Input

    The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ aibi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

    Output

    For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.


    //0-1 分数规划
    //详见: http://www.cnblogs.com/perseawe/archive/2012/05/03/01fsgh.html


    #include <iostream> #include <math.h> #include <vector> #include <queue> #include <stack> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; const int N=1010; const double eps=1e-6; double a[N],b[N]; struct node { double z; int i; bool operator<(const node &b) const { return z<b.z; } }oz[N]; int main() { int n,k; int i; while(scanf("%d %d",&n,&k)==2&&n|k) { for(i=0;i<n;i++) scanf("%lf",&a[i]); for(i=0;i<n;i++) scanf("%lf",&b[i]); double ans,temp=0; double p,q; while(1) { ans=temp; for(i=0;i<n;i++) { oz[i].i=i; oz[i].z=a[i]-temp*b[i]; } sort(oz,oz+n); p=q=0; for(i=k;i<n;i++) { p+=a[oz[i].i]; q+=b[oz[i].i]; } temp=p/q; if(fabs(temp-ans)<eps) break; } printf("%.0lf\n",ans*100); } return 0; }
  • 相关阅读:
    贝塞尔曲线原理(转载)
    无法启动此程序,因为计算机中丢失api-ms-win-crt-runtime-|1-1-0.dll
    HDU 3530 Subsequence(单调队列)
    Gym 100247I Meteor Flow(优先队列)
    BZOJ 1040: [ZJOI2008]骑士(基环树dp)
    Gym 100247C Victor's Research(有多少区间之和为S)
    Gym 100247A The Power of the Dark Side
    Gym 100247B Similar Strings(哈希+思维)
    51nod 1405 树的距离之和(dfs)
    51nod 1378 夹克老爷的愤怒(树型dp+贪心)
  • 原文地址:https://www.cnblogs.com/372465774y/p/3065684.html
Copyright © 2020-2023  润新知