• POJ 1436 Horizontally Visible Segments


    Horizontally Visible Segments
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 2188   Accepted: 818

    Description

    There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical segments. Three different vertical segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments?


    Task

    Write a program which for each data set:

    reads the description of a set of vertical segments,

    computes the number of triangles in this set,

    writes the result.

    Input

    The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow.

    The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments.

    Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:

    yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.

    Output

    The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.

    Sample Input

    1
    5
    0 4 4
    0 3 1
    3 4 2
    0 2 2
    0 2 3

    Sample Output

    1

    Source

    //又是一个偶数代表点,奇数代表区间的线段树、或许这就是线段树处理区间和点问题的方法吧

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <queue>
    #include <vector>
    #define lson l,m,k<<1
    #define rson m+1,r,k<<1|1
    #define N 20000
    using namespace std;
    int st[N<<2];
    int n;
    struct node
    {
        int y1,y2,x1;
    };
    node xy[8003];
    int sot[N],id;
    bool visit[8003];
    vector<int> hash[8003];
    bool cmp(const node&a,const node&b)
    {
        return a.x1<b.x1;
    }
    void build(int l,int r,int k)
    {
         st[k]=-1;
        if(l==r)
         return ;
         int m=(l+r)>>1;
        build(lson);
        build(rson);
    }
    void lookfor(int L,int R,int l,int r,int k)
    {
        // printf("id=%d k= %d %d\n",l,r,st[k]);
        if(st[k]!=-1)
        {
            if(!visit[st[k]])
            {
                visit[st[k]]=1;

                hash[id].push_back(st[k]);
            }
            return ;
        }
        if(l==r) return ;
        int m=(l+r)>>1;
        if(L<=m) lookfor(L,R,lson);
        if(R>m) lookfor(L,R,rson);
    }
    void down(int &k)
    {
        st[k<<1]=st[k<<1|1]=st[k];
        st[k]=-1;
    }
    void updata(int L,int R,int l,int r,int k)
    {
        if(L<=l&&R>=r)
        {
           st[k]=id;
           //printf("f=%d %d %d\n",l,r,id);
           return ;
        }
        if(st[k]!=-1)
          down(k);
          int m=(l+r)>>1;
        if(L<=m) updata(L,R,lson);
        if(R>m)  updata(L,R,rson);
    }
    int main()
    {
       int i,j,d;
       int m;
       scanf("%d",&d);
       while(d--)
       {
           scanf("%d",&m);
           n=0;
           for(j=i=0;i<m;i++)
           {
              scanf("%d%d%d",&xy[i].y1,&xy[i].y2,&xy[i].x1);
              sot[j++]=xy[i].y1;sot[j++]=xy[i].y2;
              n=n>xy[i].y1?n:xy[i].y1;
              n=n>xy[i].y2?n:xy[i].y2;
              hash[i].clear();
           }
          n=n<<1;
          build(0,n,1);
          sort(xy,xy+m,cmp);
          for(i=0;i<m;i++)
          {
              memset(visit,0,m*sizeof(bool));
              id=i;
              lookfor(xy[i].y1<<1,xy[i].y2<<1,0,n,1);
              updata(xy[i].y1<<1,xy[i].y2<<1,0,n,1);
          }
          int rc=0;
         // printf("ss");
         for(i=m-1;i>0;i--)//暴力呀
         {
             for(j=0;j<hash[i].size();j++)
                {
                    int s=hash[i][j];
                    for(int k=0;k<hash[s].size();k++)
                     {
                         for(int l=0;l<hash[i].size();l++)
                           if(hash[s][k]==hash[i][l])
                               rc++;
                     }
                }
         }printf("%d\n",rc);
       }

        return 0;
    }

  • 相关阅读:
    游戏编程模式--原型模式
    游戏编程模式--观察者模式
    游戏编程模式--享元模式
    游戏编程模式--命令模式
    mybatis的线程安全
    开发遇到的问题
    spring的ThreadLocal解决线程安全
    i++
    jvm内存初步了解
    注解@RequestMapping,@RequestBody
  • 原文地址:https://www.cnblogs.com/372465774y/p/2599813.html
Copyright © 2020-2023  润新知