• Python3 高级特性


    切片

    L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引012,正好是3个元素。

    如果第一个索引是0,还可以省略:

    >>> L =['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
    >>> L[:3] ['Michael', 'Sarah', 'Tracy']
    也可以从索引1开始,取出2个元素出来:
    >>> L[1:3]
    ['Sarah', 'Tracy']
    类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,
    >>> L[-2:]
    ['Bob', 'Jack']
    >>> L[-2:-1]
    ['Bob']
    记住倒数第一个元素的索引是-1

    切片操作十分有用。我们先创建一个0-99的数列:

    >>> L = list(range(100))
    [0, 1, 2, 3, ..., 99]

    可以通过切片轻松取出某一段数列。比如前10个数:

    >>> L[:10]
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

    前10个数,每两个取一个:

    >>> L[:10:2]
    [0, 2, 4, 6, 8]

    所有数,每5个取一个:

    >>> L[::5]
    [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
    甚至什么都不写,只写[:]就可以原样复制一个list:
    >>> L[:]
    [0, 1, 2, 3, ..., 99]
    tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
    >>> (0, 1, 2, 3, 4, 5)[:3]
    (0, 1, 2)
    字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
    >>> 'ABCDEFG'[:3]
    'ABC'
    在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
    S = "abcdefg"
    print(S[:2]) # ab
    print(S[::2]) # aceg
    print(S[::3]) # adg 

    迭代

    如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

    在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

    list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

    >>> d = {'a': 1, 'b': 2, 'c': 3}
    >>> for key in d:
    ...     print(key)
    a
    c
    b

    因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

    默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

    由于字符串也是可迭代对象,因此,也可以作用于for循环:

    >>> for ch in 'ABC':
    ...     print(ch)
    ...
    A
    B
    C

    所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

    那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

    >>> from collections import Iterable
    >>> isinstance('abc', Iterable) # str是否可迭代
    True
    >>> isinstance([1,2,3], Iterable) # list是否可迭代
    True
    >>> isinstance(123, Iterable) # 整数是否可迭代
    False

    如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

    >>> for i, value in enumerate(['A', 'B', 'C']):
    ...     print(i, value)

    上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

    >>> for x, y in [(1, 1), (2, 4), (3, 9)]:
    ...     print(x, y)

    任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

    列表生成式

    即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

    举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

    生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

    >>> L = []
    >>> for x in range(1, 11):
    ...    L.append(x * x)
    ...
    >>> L
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
    列表生成式则可以用一行语句代替循环生成上面的list([1x1, 2x2, 3x3, ..., 10x10]):
    [x * x for x in range(1, 11)]
    写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来

    for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

    >>> [x * x for x in range(1, 11) if x % 2 == 0]
    [4, 16, 36, 64, 100]

    还可以使用两层循环,可以生成全排列:

    >>> [m + n for m in 'ABC' for n in 'XYZ']
    ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
    三层和三层以上的循环就很少用到
     
    运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现
    >>> import os # 导入os模块,模块的概念后面讲到
    >>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
    ['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

    for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value:

    >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
    >>> for k, v in d.items():
    ...     print(k, '=', v)
    ...
    y = B
    x = A
    z = C

    因此,列表生成式也可以使用两个变量来生成list:

    >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
    >>> [k + '=' + v for k, v in d.items()]
    ['y=B', 'x=A', 'z=C']

    最后把一个list中所有的字符串变成小写:

    >>> L = ['Hello', 'World', 'IBM', 'Apple']
    >>> [s.lower() for s in L]

    练习2

    L1 = ['Hello', 'World', 18, 'Apple', None]
    print([x.lower() if isinstance(x, str) else x for x in L1])

    生成器

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
    g = (x * x for x in range(10))
    <generator object <genexpr> at 0x1022ef630>

    创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    next(g)
    generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
    不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'
    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            yield b
            a, b = b, a + b
            n = n + 1
        return 'done'
    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator
    >>> f = fib(6)
    <generator object fib at 0x104feaaa0>

    generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
    尝试:在上面yield b 下边添加一行print(b),调用fib(6),并没有任何输出,只有遍历f的时候才会有输出。

    举个简单的例子,定义一个generator,依次返回数字1,3,5:

    def odd():
        print('step 1')
        yield 1
        print('step 2')
        yield(3)
        print('step 3')
        yield(5)
    调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:
    >>> o = odd()
    >>> next(o)
    step 1
    1
    >>> next(o)
    step 2
    3
    >>> next(o)
    step 3
    5
    >>> next(o)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration

    odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

    把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ...     print(n)

    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

    >>> g = fib(6)
    >>> while True:
    ...     try:
    ...         x = next(g)
    ...         print('g:', x)
    ...     except StopIteration as e:
    ...         print('Generator return value:', e.value)
    ...         break
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    Generator return value: done

    要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

    迭代器

    我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    • 一类是集合数据类型,如listtupledictsetstr等;
    • 一类是generator,包括生成器和带yieldgenerator function

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

    >>> from collections import Iterable
    >>> isinstance([], Iterable)
    True
    >>> isinstance({}, Iterable)
    True
    >>> isinstance('abc', Iterable)
    True
    >>> isinstance((x for x in range(10)), Iterable)
    True
    >>> isinstance(100, Iterable)
    False

    可以使用isinstance()判断一个对象是否是Iterable对象:

    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

    • 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator
    • 可以使用isinstance()判断一个对象是否是Iterator对象:
    >>> from collections import Iterator
    >>> isinstance((x for x in range(10)), Iterator)
    True
    >>> isinstance([], Iterator)
    False
    >>> isinstance({}, Iterator)
    False
    >>> isinstance('abc', Iterator)
    False

    生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

    listdictstrIterable变成Iterator可以使用iter()函数:

    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True

    你可能会问,为什么listdictstr等数据类型不是Iterator

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    • 凡是可作用于for循环的对象都是Iterable类型;
    • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
    • 集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    Python的for循环本质上就是通过不断调用next()函数实现的

    for x in [1, 2, 3, 4, 5]:
        pass

    实际上完全等价于:

    # 首先获得Iterator对象:
    it = iter([1, 2, 3, 4, 5])
    # 循环:
    while True:
        try:
            # 获得下一个值:
            x = next(it)
        except StopIteration:
            # 遇到StopIteration就退出循环
            break
     
  • 相关阅读:
    subprocess模块讲解
    正则
    logging日志模块
    2-30hashlib模块讲解
    json pickle复习 shelve模块讲解
    XML、PyYAML和configparser模块讲解
    os模块
    2-25sys模块和shutil模块讲解
    随机生成模块
    时间模块
  • 原文地址:https://www.cnblogs.com/284628487a/p/5585654.html
Copyright © 2020-2023  润新知