题目:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
题意:给出一个m*n的矩阵,其中矩阵的特点为:(1)每一行从小到大有序排列 (2)每一行的第一位数都比前一行的数大,要求写出一个在矩阵中判定某元素是否存在的算法。因为这个矩阵具有的特点,我们可以把这个矩阵直接看成一个一维数组newArray,长度为m*n, 其中newArray[x]可以对应到矩阵的matrix[x/列数][x%列数]。然后直接对newArray使用二分查找即可。需要注意的是,当矩阵为空时,需要直接返回false。
代码:
public class Solution { public boolean searchMatrix(int[][] matrix, int target) { if(matrix.length==0){ return false; } int col=matrix[0].length; //数组列数 int row=matrix.length; //数组行数 int[] newArray=new int[row*col]; //将二维数组放到一个一维素中,newArray[i]对应二维数组中的matrix[i/n][i%n] return binarySearch(matrix,newArray,target); } public boolean binarySearch(int[][] matrix,int[] newArray,int target) { int length=newArray.length; int col=matrix[0].length; //数组列数 int low=0; int high=length-1; while(low<=high){ int mid=(low+high)/2; if(matrix[mid/col][mid%col]<target){ low=mid+1; }else if(matrix[mid/col][mid%col]>target){ high=mid-1; }else{ //System.out.println("find: "+target); return true; } } //System.out.println("not find: "+target); return false; } }