• 2018-2019-1 20189203 《Linux内核原理与分析》第七周作业


    第一部分 实验

    • 增加fork命令,运行MenuOS 如下:

    • 设置断点:
    • 跟踪调试过程:
      停在的do_fork()的位置上

      停在copy_process

      停在dup_task_struct

      停在copy_thread

    第二部分 代码分析

    SYSCALL_DEFINE0(fork)
    {
    #ifdef CONFIG_MMU
        return do_fork(SIGCHLD, 0, 0, NULL, NULL);
    #else
        return -EINVAL;
    #endif
    }
    SYSCALL_DEFINE0(vfork)
    {
        return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
                0, NULL, NULL);
    }
    #ifdef __ARCH_WANT_SYS_CLONE
    #ifdef CONFIG_CLONE_BACKWARDS
    SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
             int __user *, parent_tidptr,
             int, tls_val,
             int __user *, child_tidptr)
    #elif defined(CONFIG_CLONE_BACKWARDS2)
    SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
             int __user *, parent_tidptr,
             int __user *, child_tidptr,
             int, tls_val)
    #elif defined(CONFIG_CLONE_BACKWARDS3)
    SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
            int, stack_size,
            int __user *, parent_tidptr,
            int __user *, child_tidptr,
            int, tls_val)
    #else
    SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
             int __user *, parent_tidptr,
             int __user *, child_tidptr,
             int, tls_val)
    #endif
    {
        return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
    }
    #endif
    

    通过上面的代码可以看出 fork、vfork 和 clone 3个系统调用和kernel_thread内核函数都可以创建一个新进程,而且都是通过 do_fork 函数来创建进程的,只不过传递的参数不同。

    进程创建的主要过程

    首先了解一下do_fork () 的参数:

    • clone_flags:子进程创建相关标志,通过此标志可以对父进程的资源进行有选择的复制。
    • stack_start:子进程用户态堆栈的地址。
    • regs:指向 pt_regs 结构体(当系统发生系统调用时,pt_regs 结构体保存寄存器中的值并按顺序压入内核栈)的指针。
    • stack_size:用户态栈的大小,通常是不必要的,总被设置为0。
    • parent_tidptr 和 child_tidptr:父进程、子进程用户态下 pid 地址。
      下面是精简后的do_fork函数体关键代码:
    struct task_struct *p;    //创建进程描述符指针
      int trace = 0;
      long nr;                  //子进程pid
      ...
      p = copy_process(clone_flags, stack_start, stack_size, 
                  child_tidptr, NULL, trace);   //创建子进程的描述符和执行时所需的其他数据结构
    
      if (!IS_ERR(p))                            //如果 copy_process 执行成功
            struct completion vfork;             //定义完成量(一个执行单元等待另一个执行单元完成某事)
            struct pid *pid;
            ...
            pid = get_task_pid(p, PIDTYPE_PID);   //获得task结构体中的pid
            nr = pid_vnr(pid);                    //根据pid结构体中获得进程pid
            ...
            // 如果 clone_flags 包含 CLONE_VFORK 标志,就将完成量 vfork 赋值给进程描述符中的vfork_done字段,此处只是对完成量进行初始化
            if (clone_flags & CLONE_VFORK) {
                p->vfork_done = &vfork;
                init_completion(&vfork);
                get_task_struct(p);
            }
    
            wake_up_new_task(p);        //将子进程添加到调度器的队列,使之有机会获得CPU
    
            /* forking complete and child started to run, tell ptracer */
            ...
            // 如果 clone_flags 包含 CLONE_VFORK 标志,就将父进程插入等待队列直至程直到子进程释调用exec函数或退出,此处是具体的阻塞
            if (clone_flags & CLONE_VFORK) {
                if (!wait_for_vfork_done(p, &vfork))
                    ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
            }
    
            put_pid(pid);
        } else {
            nr = PTR_ERR(p);        //错误处理
        }
        return nr;               //返回子进程pid(父进程的fork函数返回的值为子进程pid的原因)
    }
    

    do_fork()主要完成了调用 copy_process() 复制父进程信息、获得pid、调用 wake_up_new_task 将子进程加入调度器队列等待获得分配 CPU资源运行、通过 clone_flags 标志做一些辅助工作。其中 copy_process()是创建一个进程内容的主要的代码。
    下面分析copy_process()函数是如何复制父进程的。下面是精简后的代码:

    static struct task_struct *copy_process(unsigned long clone_flags,
                        unsigned long stack_start,
                        unsigned long stack_size,
                        int __user *child_tidptr,
                        struct pid *pid,
                        int trace)
    {
        int retval;
        struct task_struct *p;
        ...
        retval = security_task_create(clone_flags);//安全性检查
        ...
        p = dup_task_struct(current);   //复制PCB,为子进程创建内核栈、进程描述符
        ftrace_graph_init_task(p);
        ···
        
        retval = -EAGAIN;
        // 检查该用户的进程数是否超过限制
        if (atomic_read(&p->real_cred->user->processes) >=
                task_rlimit(p, RLIMIT_NPROC)) {
            // 检查该用户是否具有相关权限,不一定是root
            if (p->real_cred->user != INIT_USER &&
                !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
                goto bad_fork_free;
        }
        ...
        // 检查进程数量是否超过 max_threads,后者取决于内存的大小
        if (nr_threads >= max_threads)
            goto bad_fork_cleanup_count;
    
        if (!try_module_get(task_thread_info(p)->exec_domain->module))
            goto bad_fork_cleanup_count;
        ...
        spin_lock_init(&p->alloc_lock);          //初始化自旋锁
        init_sigpending(&p->pending);           //初始化挂起信号 
        posix_cpu_timers_init(p);               //初始化CPU定时器
        ···
        retval = sched_fork(clone_flags, p);  //初始化新进程调度程序数据结构,把新进程的状态设置为TASK_RUNNING,并禁止内核抢占
        ...
        // 复制所有的进程信息
        shm_init_task(p);
        retval = copy_semundo(clone_flags, p);
        ...
        retval = copy_files(clone_flags, p);
        ...
        retval = copy_fs(clone_flags, p);
        ...
        retval = copy_sighand(clone_flags, p);
        ...
        retval = copy_signal(clone_flags, p);
        ...
        retval = copy_mm(clone_flags, p);
        ...
        retval = copy_namespaces(clone_flags, p);
        ...
        retval = copy_io(clone_flags, p);
        ...
        retval = copy_thread(clone_flags, stack_start, stack_size, p);// 初始化子进程内核栈
        ...
        //若传进来的pid指针和全局结构体变量init_struct_pid的地址不相同,就要为子进程分配新的pid
        if (pid != &init_struct_pid) {
            retval = -ENOMEM;
            pid = alloc_pid(p->nsproxy->pid_ns_for_children);
            if (!pid)
                goto bad_fork_cleanup_io;
        }
    
        ...
        p->pid = pid_nr(pid);    //根据pid结构体中获得进程pid
        //若 clone_flags 包含 CLONE_THREAD标志,说明子进程和父进程在同一个线程组
        if (clone_flags & CLONE_THREAD) {
            p->exit_signal = -1;
            p->group_leader = current->group_leader; //线程组的leader设为子进程的组leader
            p->tgid = current->tgid;       //子进程继承父进程的tgid
        } else {
            if (clone_flags & CLONE_PARENT)
                p->exit_signal = current->group_leader->exit_signal;
            else
                p->exit_signal = (clone_flags & CSIGNAL);
            p->group_leader = p;          //子进程的组leader就是它自己
            
           
            p->tgid = p->pid;        //组号tgid是它自己的pid
        }
    
        ...
        
        if (likely(p->pid)) {
            ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
    
            init_task_pid(p, PIDTYPE_PID, pid);
            if (thread_group_leader(p)) {
                ...
                // 将子进程加入它所在组的哈希链表中
                attach_pid(p, PIDTYPE_PGID);
                attach_pid(p, PIDTYPE_SID);
                __this_cpu_inc(process_counts);
            } else {
                ...
            }
            attach_pid(p, PIDTYPE_PID);
            nr_threads++;     //增加系统中的进程数目
        }
        ...
        return p;             //返回被创建的子进程描述符指针P
        ...
    }
    

    copy_process 主要完成了调用 dup_task_struct 复制当前的进程()父进程描述符 task_struct、信息检查、初始化、把进程状态设置为 TASK_RUNNING(此时子进程置为就绪态)、采用写时复制技术逐一复制所有其他进程资源、调用 copy_thread 初始化子进程内核栈、设置子进程pid。其中比较关键的是dup_task_struct复制当前进程(父进程)描述符task_struct和copy_thread初始化子进程内核栈。
    下面具体看dup_task_struct和copy_thread。
    如下为dup_task_struct精简后的代码:

    static struct task_struct *dup_task_struct(struct task_struct *orig)
    {
        struct task_struct *tsk;
        struct thread_info *ti;
        int node = tsk_fork_get_node(orig);
        int err;
        tsk = alloc_task_struct_node(node);    //为子进程创建进程描述符
        ...
        ti = alloc_thread_info_node(tsk, node); //实际上是创建了两个页,一部分用来存放 thread_info,一部分就是内核堆栈
        ...
        err = arch_dup_task_struct(tsk, orig);  //复制父进程的task_struct信息
        ...
        tsk->stack = ti;                  // 将栈底的值赋给新结点的stack
       
        setup_thread_stack(tsk, orig);//对子进程的thread_info结构进行初始化(复制父进程的thread_info 结构,然后将 task 指针指向子进程的进程描述符)
        ...
        return tsk;               // 返回新创建的进程描述符指针
        ...
    }
    

    如下为copy_thread精简后的代码:

    int copy_thread(unsigned long clone_flags, unsigned long sp,
        unsigned long arg, struct task_struct *p)
    {
    
        
        struct pt_regs *childregs = task_pt_regs(p);
        struct task_struct *tsk;
        int err;
    
        p->thread.sp = (unsigned long) childregs;
        p->thread.sp0 = (unsigned long) (childregs+1);
        memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
    
        
        if (unlikely(p->flags & PF_KTHREAD)) {
            /* kernel thread */
            memset(childregs, 0, sizeof(struct pt_regs));
          
            p->thread.ip = (unsigned long) ret_from_kernel_thread; //如果创建的是内核线程,则从ret_from_kernel_thread开始执行
            task_user_gs(p) = __KERNEL_STACK_CANARY;
            childregs->ds = __USER_DS;
            childregs->es = __USER_DS;
            childregs->fs = __KERNEL_PERCPU;
            childregs->bx = sp; /* function */
            childregs->bp = arg;
            childregs->orig_ax = -1;
            childregs->cs = __KERNEL_CS | get_kernel_rpl();
            childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
            p->thread.io_bitmap_ptr = NULL;
            return 0;
        }
    
        
        *childregs = *current_pt_regs();//复制内核堆栈(复制父进程的寄存器信息,即系统调用SAVE_ALL压栈的那一部分内容)
        
        childregs->ax = 0;           //子进程的eax置为0,所以fork的子进程返回值为0
        ...
        p->thread.ip = (unsigned long) ret_from_fork;//ip指向 ret_from_fork,子进程从此处开始执行
        task_user_gs(p) = get_user_gs(current_pt_regs());
        ...
        return err;
    

    总的来说,进程的创建过程大致是复制进程描述符、一一复制其他进程资源(采用写时复制技术)、分配子进程的内核堆栈并对内核堆栈关键信息进行初始化。

    第三部分 课本知识

    Linux进程运行状态

    • 运行状态(TASK_RUNNING)
      当进程正在被CPU执行,或已经准备就绪随时可由调度程序执行,则称该进程为处于运行状态(running)。进程可以在内核态运行,也可以在用户态运行。当系统资源已经可用时,进程就被唤醒而进入准备运行状态,该状态称为就绪态。这些状态(图中中间一列)在内核中表示方法相同,都被成为处于TASK_RUNNING状态。
    • 可中断睡眠状态(TASK_INTERRUPTIBLE)
      当进程处于可中断等待状态时,系统不会调度该进行执行。当系统产生一个中断或者释放了进程正在等待的资源,或者进程收到一个信号,都可以唤醒进程转换到就绪状态(运行状态)。
    • 暂停状态(TASK_STOPPED)
      当进程收到信号SIGSTOP、SIGTSTP、SIGTTIN或SIGTTOU时就会进入暂停状态。可向其发送SIGCONT信号让进程转换到可运行状态。
    • 僵死状态(TASK_ZOMBIE)
      当进程已停止运行,但其父进程还没有询问其状态时,则称该进程处于僵死状态。
    • 不可中断睡眠状态(TASK_UNINTERRUPTIBLE)
      与可中断睡眠状态类似。但处于该状态的进程只有被使用wake_up()函数明确唤醒时才能转换到可运行的就绪状态。
      当一个进程的运行时间片用完,系统就会使用调度程序强制切换到其它的进程去执行。另外,如果进程在内核态执行时需要等待系统的某个资源,此时该进程就会调用
      sleep_on()或sleep_on_interruptible()自愿地放弃CPU的使用权,而让调度程序去执行其它进程。进程则进入睡眠状
      态(TASK_UNINTERRUPTIBLE或TASK_INTERRUPTIBLE)。
      只有当进程从“内核运行态”转移到“睡眠状态”时,内核才会进行进程切换操作。在内核态下运行的进程不能被其它进程抢占,而且一个进程不能改变另一个进程的状态。为了避免进程切换时造成内核数据错误,内核在执行临界区代码时会禁止一切中断。
  • 相关阅读:
    创建HttpFilter与理解多个Filter代码的执行顺序
    Filter
    JSTL
    EL
    JavaBean
    HttpSession之表单的重复提交 & 验证码
    相对路径和绝对路径
    HttpSession之简易购物车
    HttpSession
    Cookie
  • 原文地址:https://www.cnblogs.com/23du/p/10015259.html
Copyright © 2020-2023  润新知