• 05-树9 Huffman Codes (30 分)


    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives an integer N (2N63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

    c[1] f[1] c[2] f[2] ... c[N] f[N]
     

    where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (1000), then followed by M student submissions. Each student submission consists of N lines, each in the format:

    c[i] code[i]
     

    where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

    Output Specification:

    For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

    Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

    Sample Input:

    7
    A 1 B 1 C 1 D 3 E 3 F 6 G 6
    4
    A 00000
    B 00001
    C 0001
    D 001
    E 01
    F 10
    G 11
    A 01010
    B 01011
    C 0100
    D 011
    E 10
    F 11
    G 00
    A 000
    B 001
    C 010
    D 011
    E 100
    F 101
    G 110
    A 00000
    B 00001
    C 0001
    D 001
    E 00
    F 10
    G 11
     
    结尾无空行

    Sample Output:

    Yes
    Yes
    No
    No
     
    结尾无空行
    提交代码:
    //构建哈夫曼树求最小长度 
    //构建最小堆
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #define MIN 0
    
    //保存编码和频率
    typedef struct CodeFrequency* CF;
    struct CodeFrequency{
        char code;
        unsigned long frequency;
    };
    
    typedef char DataType;
    typedef struct HTreeNode* HuffmanTree;
    struct HTreeNode{
        DataType data;
        int weight;
        HuffmanTree left;
        HuffmanTree right;
    };
    
    typedef HuffmanTree ElemType;
    typedef struct HeapStruct *MinHeap;
    struct HeapStruct{
        ElemType* data;
        int size;//大小
        int capacity;//容量
    };
    
    MinHeap CreateHeap(int size){
        MinHeap H = (MinHeap)malloc(sizeof(struct HeapStruct));
        H->data = (ElemType*)malloc((size+1)*sizeof(ElemType));
        H->size = 0;
        H->capacity = size;
        H->data[0] = (ElemType)malloc(sizeof(struct HTreeNode));
        H->data[0]->weight = MIN;
        return H;
    }
    int IsFull(MinHeap H){
        if(H && H->size == H->capacity){
            return 1;
        }
        return 0;
    }
    
    void Insert(MinHeap H, ElemType item){
        int i;
        if(IsFull(H)){
            return;
        }
        i = ++H->size;
        for( ; H->data[i/2]->weight > item->weight; i/=2){
            H->data[i] = H->data[i/2];
        }
        H->data[i] = item;
    }
    
    int IsEmpty(MinHeap H){
        if(H->size == 0){
            return 1;
        }
        return 0;
    }
    
    
    ElemType DeleteMin(MinHeap H){
        if(IsEmpty(H)){
            return NULL;
        }
        ElemType min, X;
        min = H->data[1];
        X = H->data[H->size--];
        int parent, child;
        for(parent = 1; parent * 2 <= H->size; parent = child){
            child = parent*2;
            if((child != H->size) && (H->data[child]->weight >= H->data[child+1]->weight))
                child++;  /* child指向左右子结点的较小者 */
            if( X->weight <= H->data[child]->weight ){
                break; /* 找到了合适位置 */
            } 
            else  /* 下滤X */
                H->data[parent] = H->data[child];
        }
        H->data[parent] = X;
        return min;
    }
    
    HuffmanTree GetHuffmanTree(MinHeap H){
        int i;
        HuffmanTree T;
        while(H->size > 1){
            T = (HuffmanTree)malloc(sizeof(struct HTreeNode));
            memset(T, 0, sizeof(struct HTreeNode));
            T->left = DeleteMin(H);
            T->right = DeleteMin(H);
            T->weight = T->left->weight + T->right->weight;
            Insert(H, T);
        }
        T = DeleteMin(H);
        return T;
    }
    
    //在最小堆的基础上构Haffman树
    HuffmanTree BuildHuffmanTree(MinHeap H, int N, CF* cf){
        *cf = (CF)malloc(N*sizeof(struct CodeFrequency));
        memset(*cf, 0, N*sizeof(struct CodeFrequency));
        for(int i = 0; i < N; ++i){
            ElemType item = (ElemType)malloc(sizeof(struct HTreeNode));
            item->left = NULL;
            item->right = NULL;
            if(i == 0){
                scanf("%c %d",&item->data, &item->weight);
            }
            else{
                scanf(" %c %d",&item->data, &item->weight);
            }
            (*cf)[i].code = item->data;
            (*cf)[i].frequency = item->weight;
            Insert(H, item);
        }
        return GetHuffmanTree(H);
    }
    
    //中序遍历哈夫曼树求得编码的最小长度
    void InOrder(HuffmanTree root, int pathLen, int *totalLen){
        if(root->left == NULL && root->right == NULL){
            (*totalLen) += pathLen*root->weight;
            return;
        }
        if(root->left){
            InOrder(root->left, pathLen+1, totalLen);
        }
        if(root->right){
            InOrder(root->right, pathLen+1, totalLen);
        }
    }
    
    typedef struct TreeNode* Tree;
    struct TreeNode{
        Tree left;
        Tree right;
    };
    
    //插入树,传入根结点root,字符ch,编码s
    Tree TreeInsert(Tree root, char ch, char* code, int* flag){
        //如果最后一个结点不是新分配出来的就不符合前缀码的特征
        if(root != NULL && *code == '')
        {
            *flag = 0;
            return root;
        }
        if(root == NULL){
                root = (Tree)malloc(sizeof(struct TreeNode));
                root->left = NULL;
                root->right = NULL;
        }
        //编码0代表左子结点,编码1代表右子节点
        if(*code == '0'){
            root->left = TreeInsert(root->left, ch, code + 1, flag);
        }
        else if(*code == '1'){
            root->right = TreeInsert(root->right, ch, code + 1, flag);
        }
        return root;
    }
    
    //检查一个学生的答案
    int SingleCheck(int N, unsigned long totalLen, CF *cf){
        Tree root = NULL;
        int flag = 1;
        unsigned long len = 0;
        for(int i = 0; i < N; ++i){
            char ch;
            char code[64];
            scanf("
    ");
            scanf("%c", &ch);
            scanf("%s", code);
            if(flag){
                root = TreeInsert(root, ch, code, &flag);
            }
            len += strlen(code)*((*cf)[i].frequency);
        }
        if(totalLen != len){
            flag = 0;
        }
        return flag;
    }
    
    //检查答案
    void CheckAnswers(int N, unsigned long totalLen, CF* cf){
        int M;
        scanf("%d", &M);
        for(int i = 0; i < M; ++i){
            if(SingleCheck(N, totalLen, cf))
            {
                printf("Yes
    ");
            }
            else{
                printf("No
    ");
            }
        }
    }
    
    //解题思路
    //1.判断编码是不是最小长度(保证长度最小)
    //2.判断编码是不是前缀码(保证唯一性)
    int main(){
        int N;
        CF cf = NULL;
        scanf("%d
    ", &N);
        MinHeap H = CreateHeap(N);
        //构建HaffmanTreee 求得最小长度
        HuffmanTree huffman = BuildHuffmanTree(H, N, &cf);
        //中序遍历求得最小长度
        int totalLen = 0;
        InOrder(huffman, 0, &totalLen);
        //检查答案
        CheckAnswers(N, totalLen, &cf);
        
        return 0;
    }
     
  • 相关阅读:
    Lucene.NET 开发实现
    WIN7安装配置 SharePoint2010 各种问题汇总
    Wince后台系统补丁更新实现
    Lucene.NET 若干知识点&&疑难杂症以及解决
    .NET设计模式系列文章 很有名的博客园TerryLee的系列文章,设计模式不可多得的好文
    客户端多线程应用的好工具:BackgroundWorker
    Swift、ObjectiveC 单例模式 (Singleton)
    字节对齐
    iOS中求出label中文字的行数和每一行的内容
    工作终于到的坑爹集锦,欢迎补充~
  • 原文地址:https://www.cnblogs.com/2018shawn/p/15178460.html
Copyright © 2020-2023  润新知