• Linux内核分析第三次作业


    实验:mykernel时间片轮转多道程序内核

    进入实验楼实验,在终端中分别输入以下命令

    cd LinuxKernel/linux-3.9.4
    rm -rf mykernel
    patch -p1 < ../mykernel_for_linux3.9.4sc.patch //打补丁
    make allnoconfig
    make 
    qemu -kernel arch/x86/boot/bzImage
    

    make过程如下图:

    https://dn-simplecloud.shiyanlou.com/8449831540547871321-wm
    https://dn-simplecloud.shiyanlou.com/8449831540548661907-wm

    mykernel时间片轮转代码分析

    这里主要分析上面实验中改写的三个文件,其作用简述如下,

    mypcb.h : 进程控制块PCB结构体定义。
    mymain.c: 初始化各个进程并启动0号进程。
    myinterrupt.c:时钟中断处理和进程调度算法。

    mypcb.h头文件

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*8
    
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long       ip;   
        unsigned long       sp;  
    };
    
    typedef struct PCB{
        int pid;               
        volatile long state;  
        char stack[KERNEL_STACK_SIZE]; 
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long   task_entry;   //入口
        struct PCB *next; 
    }tPCB;
    
    void my_schedule(void); 
    
    在这个文件里,定义了 Thread 结构体,用于存储当前进程中正在执行的线程的ip和sp
    这里还有一个函数的声明 my_schedule,它的实现在my_interrupt.c中,在mymain.c中的各个进程函数会根据一个全局变量的状态来决定是否调用它,从而实现主动调度。
    

    mymain.c文件

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];  
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
      
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        
    
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        
       
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"     /* set task[pid].thread.sp to esp */
            "pushl %1
    	"          /* push ebp */
            "pushl %0
    	"          /* push task[pid].thread.ip */
            "ret
    	"               /* pop task[pid].thread.ip to eip */
            "popl %%ebp
    	"
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   /* input c or d mean %ecx/%edx*/
        );
    }   
    
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule(); 
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    
    这里的函数 my_start_kernel 是系统启动后,最先调用的函数,在这个函数里完成了0号进程的初始化和启动,并创建了其它的进程PCB,以方便后面的调度。在模拟系统里,每个进程的函数代码都是一样的,即 my_process 函数,my_process 在执行的时候,会打印出当前进程的 id,从而使得我们能够看到当前哪个进程正在执行。
    另外,在 my_process 也会检查一个全局标志变量 my_need_sched,一旦发现其值为 1 ,就调用 my_schedule 完成进程的调度。
    

    myinterrupt.c文件

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];  
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    void my_timer_handler(void) 
    {
    #if 1
        if(time_count%100 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;     
    }
    
    void my_schedule(void)
    {
        tPCB * next;   
        tPCB * prev;  
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ 
           {
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* 切换进程 */
            asm volatile(   
                "pushl %%ebp
    	"       /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl $1f,%1
    	"       /* save eip */  
                "pushl %3
    	" 
                "ret
    	"               /* restore  eip */
                "1:	"                  /* next process start here */
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
        
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(   
                "pushl %%ebp
    	"       /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl %2,%%ebp
    	"     /* restore  ebp */
                "movl $1f,%1
    	"       /* save eip */  
                "pushl %3
    	" 
                "ret
    	"               /* restore  eip */
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }   
        return; 
    }
    
    
    通过本讲的学习和实验,我们知道操作系统的核心功能就是:进程调度和中断机制,通过与硬件的配合实现多任务处理,再加上上层应用软件的支持,最终变成可以使用户可以很容易操作的计算机系统。通过这个实验我们可以知道,mykernel系统启动后,调用my_start_kernel函数和my_timer_handler函数,完成系统进程的初始化和进程的轮转调度。    
    
  • 相关阅读:
    C++——模板、数组类
    JSP教程(四)—— JSP内置对象(上)
    JSP教程(三)—— 基本语法
    JSP教程(二)—— JavaWeb简介
    JSP教程(一)—— JavaWeb开发环境
    关于余弦定理的一些见解
    文本相似度比较(网页版)
    关于SimHash算法的实现及测试V4.0
    关于SimHash算法的实现及测试V3.0
    关于SimHash算法的实现及测试V2.0
  • 原文地址:https://www.cnblogs.com/20189223cjt/p/9858205.html
Copyright © 2020-2023  润新知