• BZOJ4238 : 电压


    BZOJ4238 : 电压

    感谢这位dalao的文章:https://www.cnblogs.com/clrs97/p/4737869.html

    这道题有利用dfs树的巧妙做法,但是仅仅是思路上的优化,这里我们总结下比较常规(?)的方法

    首先分析题意,我们发现,环与一条边能否被选有着密切的关系

    若图中有环,那么这条边必须在所有奇环的交,且不属于任何一个偶环

    因为如果奇环中没有这条边的话就不能二分染色,而偶环有了就不能

    因为环的特殊性,我们可以想到先做出个没有环的图,再逐个统计环的影响

    所以我们先生成一个树/森林,再将非树边加入,统计经过每条边的奇环数和偶环数即可

    但是也有可能在一个环上不只有一条非树边,对于这种由多个环组成的环怎么办呢?

    答案是不用管他。。。

    (以下图黑边为树边,红边为非树边)

    1.奇环+奇环=偶环 新形成的偶环因为上面的边都没法经过所有奇环被自然淘汰了

    2.偶环+偶环=偶环 反正都不能选了

    3.奇环+偶环=奇环 就是从奇环上扣去一部分,偶环的标记可以做到这一点

    而具体的实现上使用了树链刨分加前缀和,我觉得dalao的代码非常妙,这里列一下

    1.将边转化成了点,即u——v变成u—i—v,其中i是边的标号,这样非常方便打标记,边用的是1+n至m+n的编号

    2.判断奇偶环使用的是两个端点深度的奇偶是否相同,这里为了方便维护了两个深度(dis,d)分别是真实深度和算上“边节点”的深度

    还有一些关于自己要学习的码风

    3.多用“,”,少用“;”

    4.for的循环变量尽量全局

    5.树刨代码简洁明了,值得学习(我太菜了555

     1 #include<cstdio>
     2 #define N 300010
     3 using namespace std;
     4 int n,m,i,x,y,dfn,f[N],e[N][2],need[N],h[N],v[N<<1],nxt[N<<1],et,d[N],size[N],son[N],top[N],loc[N],cnt,s[2][N],ans,dis[N],ban[N];
     5 inline int read(){
     6     int x=0;char ch=getchar();while(ch<'0'||ch>'9')ch=getchar();
     7     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
     8     return x;
     9 }
    10 int F(int x){if(f[x]!=x)f[x]=F(f[x]);return f[x];}
    11 inline void add(int x,int y){
    12     v[++et]=y;nxt[et]=h[x];h[x]=et;
    13     v[++et]=x;nxt[et]=h[y];h[y]=et;
    14 }
    15 void dfs(int x,int y){
    16     size[x]=1,d[x]=d[f[x]=y]+1,dis[x]=dis[y]+(x<=n);
    17     for(int k=h[x];k;k=nxt[k])if(v[k]!=y){
    18         dfs(v[k],x);size[x]+=size[v[k]];
    19         if(size[v[k]]>size[son[x]])son[x]=v[k];
    20     }
    21 }
    22 void dfs2(int x,int y){
    23     top[x]=y;loc[x]=++dfn;
    24     if(son[x])dfs2(son[x],y);
    25     for(int k=h[x];k;k=nxt[k])if(v[k]!=f[x]&&v[k]!=son[x])dfs2(v[k],v[k]);
    26 }
    27 inline void modify(int x,int y,int p){
    28     for(;top[x]!=top[y];x=f[top[x]]){
    29         if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
    30         s[p][loc[top[x]]]++,s[p][loc[x]+1]--;
    31     }
    32     if(d[x]<d[y]){int z=x;x=y;y=z;}
    33     s[p][loc[y]]++,s[p][loc[x]+1]--;
    34 }
    35 int main(){
    36     n=read();m=read();
    37     for(i=1;i<=n;i++)f[i]=i;
    38     for(i=1;i<=m;i++){
    39         x=read(),y=read(),e[i][0]=x,e[i][1]=y;
    40         if(F(x)!=F(y))f[f[x]]=f[y],add(x,i+n),add(y,i+n);
    41         else need[i]=1;
    42     }
    43     for(i=1;i<=n;i++)if(!d[i])dfs(i,0),dfs2(i,i);
    44     for(i=1;i<=m;i++)if(need[i]){
    45         x=e[i][0],y=e[i][1];
    46         if((dis[x]&1)^(dis[y]&1))ban[i]=1,modify(x,y,0);else modify(x,y,1),cnt++;
    47     }
    48     for(i=2;i<=dfn;i++)s[0][i]+=s[0][i-1],s[1][i]+=s[1][i-1];
    49     for(i=1;i<=m;i++)if(need[i]){
    50         if(!ban[i]&&cnt==1)ans++;
    51     }else{
    52         if(!s[0][loc[i+n]]&&s[1][loc[i+n]]==cnt)ans++;
    53     }
    54     printf("%d",ans);
    55     return 0;
    56 }
    View Code
  • 相关阅读:
    BigTale
    GFS Google File System(中文翻译)
    MapReduce
    Google MapReduce/GFS/BigTable三大技术的论文中译版
    Linux常用命令大全
    linux常用命令
    Oracle复杂查询
    jquery on事件jquery on实现绑定多个事件
    Java 多线程(六) synchronized关键字详解
    什么才算是真正的编程能力?
  • 原文地址:https://www.cnblogs.com/2017SSY/p/10428191.html
Copyright © 2020-2023  润新知