题目大意:给出n个点,m条关系,按关系的从小到大排序。
题目分析:拓扑排序的模板题,套模板。
kahn算法:
伪代码:
Kahn算法:
摘一段维基百科上关于Kahn算法的伪码描述:
L← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty
do
remove a node n from S
insert n into L
foreach node m with an edge
e from nto m do
remove edge e from thegraph
ifm has no other incoming edges
then
insert m into S
if graph has edges
then
return error (graph has at least onecycle)
else
return L (a topologically sortedorder)
维护一个入度为0的点的集合S,一个初始为空的集合L,L存放排好序的序列。将集合S中的一个点加入集合L后,在S中删除该点并破坏所有从该点出发的边,若被破坏的边的另一端点的入度为0,则加入S,一直处理到S为空。若仍有边存在,则存在环路,反之,集合L中的元素便是按拓扑序排放的。时间复杂度为O(E+V)。
代码如下:
# include<iostream> # include<cstdio> # include<queue> # include<vector> # include<cstring> # include<algorithm> using namespace std; int mp[105][105],n,m,d[105]; vector<int>l; queue<int>q; int judge(int u) { int cnt=0; for(int i=1;i<=n;++i) if(mp[i][u]) ++cnt; return cnt; } void solve() { l.clear(); while(!q.empty()){ int u=q.front(); q.pop(); l.push_back(u); for(int i=1;i<=n;++i){ if(mp[u][i]){ mp[u][i]=0; --d[i]; if(d[i]==0) q.push(i); } } } for(int i=0;i<n;++i) printf("%d%c",l[i],(i==n-1)?' ':' '); } int main() { int a,b; while(scanf("%d%d",&n,&m)&&(n+m)) { memset(mp,0,sizeof(mp)); while(m--){ scanf("%d%d",&a,&b); mp[a][b]=1; } while(!q.empty()) q.pop(); for(int i=1;i<=n;++i){ d[i]=judge(i); if(d[i]==0) q.push(i); } solve(); } return 0; }
基于dfs的拓扑排序:
同样摘录一段维基百科上的伪码:
L ← Empty list that will contain the sorted nodes
S ← Set of all nodes with no outgoing edges
for each node n in S
do
visit(n)
function visit(node n)
if n has not been visited yet
then
mark n as visited
for each node m with an edgefrom m to ndo
visit(m)
add n to L
维护一个出度为0的点的集合S,一个初始为空的集合L,L存放排好序的序列。对于集合S中的一个点e,先将所有应该排在e前面的点放到集合L之后,再将点e放入集合L。时间复杂度为O(E+V)。
代码如下:
# include<iostream> # include<cstdio> # include<queue> # include<vector> # include<cstring> # include<algorithm> using namespace std; vector<int>l; queue<int>q; int n,m,mp[105][105],mark[105]; bool judge(int u) { for(int i=1;i<=n;++i) if(mp[u][i]) return false; return true; } void visit(int u) { if(!mark[u]){ mark[u]=1; for(int i=1;i<=n;++i) if(mp[i][u]) visit(i); l.push_back(u); } } void solve() { l.clear(); memset(mark,0,sizeof(mark)); while(!q.empty()){ int u=q.front(); q.pop(); visit(u); } for(int i=0;i<n;++i) printf("%d%c",l[i],(i==n-1)?' ':' '); } int main() { int a,b; while(scanf("%d%d",&n,&m)&&(n+m)) { memset(mp,0,sizeof(mp)); while(m--) { scanf("%d%d",&a,&b); mp[a][b]=1; } while(!q.empty()) q.pop(); for(int i=1;i<=n;++i){ if(judge(i)) q.push(i); } solve(); } return 0; }