• 基于TensorFlow的MNIST手写数字识别-深入


    构建多层卷积神经网络时需要多组W和偏移项b,我们封装2个方法来产生W和b

    初级MNIST中用0初始化W和b,这里用噪声初始化进行对称打破,防止产生梯度0,同时用一个小的正值来初始化b避免dead neurons。

    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    tf.truncated_normal()返回truncated normal distribution产生的随机值
    def truncated_normal(shape,
    mean=0.0,
    stddev=1.0,
    dtype=dtypes.float32,
    seed=None,
    name=None):

    stddev:为标准差
    mean:为均值


    Convolution and Pooling(卷积和池化)

    TensorFlow使得convolution和pooling operations具有更多的灵活性,我们怎么处理boundaries,stride size是多少,

    这里stride用1,并用0填充使得输入和输出的大小相同。

    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    卷积函数:
    def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None):
    data_format:string变量,值有 "NHWC", "NCHW"。 
        默认为 "NHWC"表示 [batch, height, width, channels]
    input:要求为一个4-D Tensor,维度顺序与data_format一样,
        shape为[batch, in_height, in_width, in_channels]
    类型为float32或half
    filter:要求为一个4-D Tensor,维度顺序与data_format一样,
        shape为[filter_height, filter_width, in_channels, out_channels]
           类型与input一样  【 相当于卷积核 】
    strides: A list of `ints`或1-D tensor of length 4。对应于input中每一维的滑动窗口
    padding:string类型,变量值可取"SAME", "VALID",表示不同的卷积方式
    SAME:采用填充的方式
    VALID:采用丢弃的方式

    具体含义请参考tensorflow conv2d的padding解释以及参数解释

    【TensorFlow】tf.nn.conv2d是怎样实现卷积的?

     
    此函数做了哪些事?
    1 将filter reshape成2维 [filter_height * filter_weight * in_channels, output_channels]
    2 从input中提取image patches,形成虚拟 tensor [batch, out_height, out_width, filter_height * filter_width * in_channels]
    3 对于每个batch,右乘 filter matrix和image patch vector
    示例:
    
    output[b, i, j, k] =
        sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
                        filter[di, dj, q, k]
    
    Must have `strides[0] = strides[3] = 1`.  For the most common case of the same
    horizontal and vertices strides, `strides = [1, stride, stride, 1]`.

    用一个例子来说明:
    input的维度为[2, 5, 5, 4]表示batch_size为2, 图片是5 * 5, 输入通道数为 4,
    filter的维度为[3, 3, 4, 2]表示卷积核大小为3 * 3,输入通道数为4, 输出通道数为 2
    步长为1,padding方式选用VALID
    import tensorflow as tf
    
    input = tf.Variable(tf.random_normal([2, 5, 5, 4]))
    filter = tf.Variable(tf.random_normal([3, 3, 4, 2]))
    op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
    sess = tf.InteractiveSession()
    initializer = tf.global_variables_initializer()
    sess.run(initializer)
    print(op.shape)
    print(sess.run(op))

    输出:[batch_size, out_height, out_width, out_channels]

    将VALID改为SAME,输出如下:

     

    池化:

    pooling通常在convolution 后面,降低卷积层输出的特征向量。

    包括max_pool和mean_pool,先介绍max_pool

    def max_pool(value, ksize, strides, padding, data_format="NHWC", name=None):

    参数介绍:

    value:输入通常是feature map(卷积层的输出),依然是一个4-D tensor  [batch_size, height, width, channels] 
    ksize:池化窗口大小,对应value的每一维。一般不在batch_size和channels上池化,所以这2个维度上一般设为1
    strides:和卷积类似,窗口在每一个维度上的滑动的步长
    padding:和卷积类似,可以取 VALID、SAME

    例子说明:
    import tensorflow as tf
    input = tf.Variable(tf.random_normal([3, 7, 7, 2]))
    op = tf.nn.max_pool(input, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='VALID')
    with tf.Session()as sess:
        sess.run(tf.global_variables_initializer())
        re = sess.run(op)
        print(op.shape)
        print(re)

    输出:


    以上分别是卷积和池化的介绍,下面开始卷积神经网络的构建。

    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    x = tf.placeholder(tf.float32, shape=(None, 784))
    y_ = tf.placeholder(tf.float32, shape=(None, 10))

    分别是数据集的下载,以及x,y_的占位

    第一层卷积:

    卷积会为每5 * 5 patch计算32维的feature

    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)

    x_image将x reshape为4-D tensor

    max_pool操作将图片size缩为14 * 14

    第二层卷积:

    为构建深层网络,我们要堆叠多个这种类型的层。第二层每个5 * 5patch有64个feature。

    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    现在图片size为7 * 7

    密集连接层

    # 密集连接层
    W_fcl = weight_variable([7*7*64, 1024])
    b_fcl = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fcl = tf.nn.relu(tf.matmul(h_pool2_flat, W_fcl) + b_fcl)

    全连接层有1024个神经元,用于处理整个图片

    Dropout

    请参考理解dropout

    为减少过拟合,我们在输出之前应用Dropout,创建一个占位符表示Dropout期间神经元的输出被保留的概率。一般我们可以在training期间打开Dropout,test期间关闭Dropout。

     TensorFlow的tf.nn.dropout可以自动缩放神经元的输出并屛蔽它们。

    #Dropout层
    keep_prob = tf.placeholder(tf.float32)
    h_fcl_drop = tf.nn.dropout(h_fcl, keep_prob)

    输出层

    #输出层
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv = tf.matmul(h_fcl_drop, W_fc2) + b_fc2

    Train and Evaluate the Model

    本节的模型与初级里面的一层softmax网络模型相比有以下不同:

    1:用sophisticated ADAM optimizer代替梯度下降法进行优化

    2:feed_dict中包含keep_prob来控制丢弃的概率

    3:training过程中,每100次迭代输出一次日志

    运行:

    #loss
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    #eval
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    #run
    with tf.Session()as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(20000):
            batch = mnist.train.next_batch(50)
            #train accuracy
            if i % 100 == 0:
                train_accuracy = sess.run(accuracy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
                print('step %d,training accuracy %g' % (i, train_accuracy))
            sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
        #test accuracy
        print('test accuracy %g' % sess.run(accuracy, feed_dict={x: mnist.test.images, y_:  mnist.test.labels, keep_prob: 1.0}))

    最终test set上的准确率为0.992

    完整代码:

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    x = tf.placeholder(tf.float32, shape=(None, 784))
    y_ = tf.placeholder(tf.float32, shape=(None, 10))
    
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    
    # 第一层卷积
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    # 第二层卷积
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    # 密集连接层
    W_fcl = weight_variable([7*7*64, 1024])
    b_fcl = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fcl = tf.nn.relu(tf.matmul(h_pool2_flat, W_fcl) + b_fcl)
    
    # Dropout层
    keep_prob = tf.placeholder(tf.float32)
    h_fcl_drop = tf.nn.dropout(h_fcl, keep_prob)
    
    # 输出层
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv = tf.matmul(h_fcl_drop, W_fc2) + b_fc2
    
    # loss
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    # eval
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    # run
    with tf.Session()as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(20000):
            batch = mnist.train.next_batch(50)
            # train accuracy
            if i % 100 == 0:
                train_accuracy = sess.run(accuracy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
                print('step %d,training accuracy %g' % (i, train_accuracy))
            sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
        # test accuracy
        print('test accuracy %g' % sess.run(accuracy, feed_dict={x: mnist.test.images, y_:  mnist.test.labels, keep_prob: 1.0}))
    View Code

    运行结果:





    如有疑问请联系我,写的不对的地方请联系我进行更改,感谢~ QQ:1968380831
  • 相关阅读:
    Jumpserver之安装在CentOS主机步骤
    Nginx负载均衡后端健康检查(支持HTTP和TCP)
    Nginx负载均衡后端健康检查
    ELK之使用packetbeat分析网络包流量
    ELK之使用heartbeat监控WEB站点
    ELK之elasticsearch导致CPU居高不下系统慢解决办法
    Saltstack如何修改主机名或者minion id
    mac中使用 sourcetree 的快速配置和git服务器登录
    [转]从三层架构迈向领域驱动设计 — 关于领域设计中描述相对简要及明了的一篇文章
    io-nio 区别示意图
  • 原文地址:https://www.cnblogs.com/1zhangwenjing/p/8241648.html
Copyright © 2020-2023  润新知