• 51nod1228


    伯努利数

    这个是答案

    其中的b是伯努利数,可以n^2预处理

    伯努利数n^2递推

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int N = 2e3 + 5, mod = 1e9 + 7;
    ll n, k;
    ll inv[N], c[N][N], b[N];
    inline ll rd()
    {
        ll x = 0, f = 1;
        char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        return x * f;
    }
    int main()
    {
        int T = rd();
        c[0][0] = 1;
        for(int i = 1; i < N; ++i)
        {
            c[i][0] = 1;
            for(int j = 1; j < N; ++j) c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
        }
        inv[1] = 1;
        for(int i = 1; i < N; ++i)
            if(i != 1) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
        b[0] = 1;
        for(int i = 1; i < N - 1; ++i)
        {
            for(int j = 0; j < i; ++j) 
                b[i] = (b[i] + c[i + 1][j] * b[j]) % mod;
            b[i] = ((b[i] * -inv[i + 1] % mod) + mod) % mod;
        }
        while(T--)
        {
            n = rd() % mod;
            k = rd();
            ll ans = 0, fac = 1;
            for(int i = 1; i <= k + 1; ++i) 
            {
                fac = fac * (n + 1) % mod;
                ans = (ans + c[k + 1][i] * b[k + 1 - i] % mod * fac % mod) % mod;
            }    
            ans = (ans * inv[k + 1]) % mod;
            printf("%lld
    ", ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    django之上传
    djano的ORM操作
    Python中的分页管理
    MySQL作业
    socket操作
    python的os模块
    django-debug-toolbar的配置及使用
    logging模板及配置说明
    使用StrictRedis连接操作有序集合
    学习总结
  • 原文地址:https://www.cnblogs.com/19992147orz/p/8029945.html
Copyright © 2020-2023  润新知