• bzoj2144


    二分+lca

    我们把向中间缩看成向上爬,向两边走看成向下爬,那么就相当于找出两个状态的lca,如果相邻的差是(a,b),a<b,那么向中间走就是(a,b-a)或(b-a,a),这个东西很像更相减损术,那么我们直接用(b-1)/a算出来要走的步数,然后继续递归求lca,直到走不了为止。先爬inf步判断是否有共同的祖先,然后将比较深的爬到同一高度,然后二分爬的步数,每次求lca就行了。

    思路很奇妙啊 

    #include<bits/stdc++.h>
    using namespace std;
    struct data {
        int a[3];
        data() { memset(a, 0, sizeof(a)); }
        bool friend operator != (const data &a, const data &b) {
            for(int i = 0; i < 3; ++i) if(a.a[i] != b.a[i]) return true;
            return false;
        }
    };
    int dd, s1, s2;
    int a[3], b[3];
    data lca(int *a, int d) 
    {
        data ret;
        int t1 = a[1] - a[0], t2 = a[2] - a[1];
        for(int i = 0; i < 3; ++i) ret.a[i] = a[i];
        if(t1 == t2) return ret;
        if(t1 < t2) 
        {
            int tmp = min(d, (t2 - 1) / t1);
            d -= tmp;
            dd += tmp;
            ret.a[0] += tmp * t1;
            ret.a[1] += tmp * t1;
        }
        else
        {
            int tmp = min(d, (t1 - 1) / t2);
            d -= tmp;
            dd += tmp;
            ret.a[2] -= tmp * t2;
            ret.a[1] -= tmp * t2;
        }
        return d ? lca(ret.a, d) : ret; 
    }
    int main()
    {
        for(int i = 0; i < 3; ++i) scanf("%d", &a[i]);
        for(int i = 0; i < 3; ++i) scanf("%d", &b[i]);
        sort(a, a + 3);
        sort(b, b + 3);
        data t1 = lca(a, 1e9);
        s1 = dd;
        dd = 0;
        data t2 = lca(b, 1e9);
        s2 = dd;
        dd = 0;
        if(t1 != t2) 
        {
            puts("NO");
            return 0;
        }
        if(s1 < s2) 
        {
            swap(s1, s2);
            for(int i = 0; i < 3; ++i) swap(a[i], b[i]);
        }
        t1 = lca(a, s1 - s2);
        for(int i = 0; i < 3; ++i) a[i] = t1.a[i];
        int l = 0, r = 1e9, ans = 0; 
        while(r - l > 1)
        {
            int mid = (l + r) >> 1;
            if(lca(a, mid) != lca(b, mid)) l = mid;
            else r = ans = mid;
        } 
        if(ans && !(lca(a, ans - 1) != lca(b, ans - 1))) --ans;
        printf("YES
    %d
    ", s1 - s2 + 2 * ans);
        return 0;
    }
    View Code
  • 相关阅读:
    jekyll简单使用
    三、ansible简要使用
    四、ansible主机组定义
    项目中远程连接404 NOT FOUND问题的原因以及解决办法(这里只涉及我遇到的问题)
    AS3中的位操作
    AS3中is和as操作符的区别
    static 函数和普通函数的区别
    [译] SystemTap
    2017-09-17 python 学习笔记
    xargs 命令使用小记
  • 原文地址:https://www.cnblogs.com/19992147orz/p/7770499.html
Copyright © 2020-2023  润新知