背包dp
一道很早以前就见过的dp
dp[i][j][k]表示选到第i本书,第一层宽度为j,第二层宽度为k的最小高度,我们先把书按高度排序,然后转移就很方便了,因为高度降序,所以后选的书不影响之前选的,也就是说只有当前层没放过书才用这本书更新,否则维护原来的值,然后滚动数组,卡卡常数就过了
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int N = 2110; struct data { int h, t; bool friend operator < (const data &a, const data &b) { return a.h > b.h; } } a[N]; int pre, n; ll ans = 1000000000000000ll; int dp[2][N][N], sum[N]; int main() { scanf("%d", &n); for(int i = 1; i <= n; ++i) scanf("%d%d", &a[i].h, &a[i].t); sort(a + 1, a + n + 1); for(int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + a[i].t; memset(dp, 0x3f3f, sizeof(dp)); dp[pre][0][0] = 0; for(int i = 1; i <= n; ++i) { pre ^= 1; memset(dp[pre], 0x3f3f, sizeof(dp[pre])); for(int j = 0; j <= sum[n]; ++j) for(int k = 0; k <= sum[n]; ++k) if(dp[pre ^ 1][j][k] < 0x3f3f3f3f) { if(j == 0) dp[pre][j + a[i].t][k] = min(dp[pre][j + a[i].t][k], dp[pre ^ 1][j][k] + a[i].h); else if(j + a[i].t <= sum[n]) dp[pre][j + a[i].t][k] = min(dp[pre][j + a[i].t][k], dp[pre ^ 1][j][k]); if(k == 0) dp[pre][j][k + a[i].t] = min(dp[pre][j][k + a[i].t], dp[pre ^ 1][j][k] + a[i].h); else if(k + a[i].t <= sum[n]) dp[pre][j][k + a[i].t] = min(dp[pre][j][k + a[i].t], dp[pre ^ 1][j][k]); if(sum[i] - j - k == a[i].t) dp[pre][j][k] = min(dp[pre][j][k], dp[pre ^ 1][j][k] + a[i].h); else if(sum[i] - j - k > a[i].t) dp[pre][j][k] = min(dp[pre][j][k], dp[pre ^ 1][j][k]); } } for(int i = 1; i <= sum[n]; ++i) for(int j = 1; j <= sum[n]; ++j) if(i + j < sum[n] && dp[pre][i][j] < 0x3f3f3f3f) ans = min(ans, (max((ll)i, max((ll)j, sum[n] - (ll)i - (ll)j)) * (ll)dp[pre][i][j])); printf("%lld ", ans); return 0; }