• bzoj1018


    线段树分治+并查集

    线段树本身就是分治结构,碰见这种带删除修改的题目是再合适不过的,我们对于每段修改区间在线段树上打标记,每次路过就进行修改,叶子结点表及答案,先把所有修改在线段树上标记,然后dfs就行了

    但是并查集怎么恢复呢?我们只要维护一个栈,保存某次操作之前这两个点的信息,dfs本身就是利用栈来操作,那么每次回溯就用栈的信息恢复之前的样子就行了

    #include<bits/stdc++.h>
    using namespace std;
    const int N = 100010;
    int c, tot, cnt, top, ask;
    int fa[N], l[N], r[N], d[N], mark[N];
    bool ans[N];
    struct dsu {
        int u, v, fa, du, dv;
        dsu(int u = 0, int v = 0, int fa = 0, int du = 0, int dv = 0) : u(u), v(v), fa(fa), du(du), dv(dv) {}
    } st[N];
    pair<int, int> operation[N];
    map<pair<int, int>, int> mp;
    vector<pair<int, int> > tree[N << 2], q[N << 2];
    char opt[10];
    inline int read()
    {
        int x = 0, f = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        return x * f;
    }
    int find(int x)
    {
        return x == fa[x] ? x : find(fa[x]);
    }
    int id(int x, int y)
    {
        return (x - 1) * c + y;
    }
    void unite(pair<int, int> o)
    {
        int x = find(o.first), y = find(o.second);
        if(d[x] > d[y]) swap(x, y);
        st[++top] = dsu(x, y, fa[x], d[x], d[y]);
        if(x != y) 
        {
            d[y] += d[x];
            fa[x] = y;
        }
    }
    void del(int now)
    {
        while(top != now)
        {
            dsu x = st[top];
            fa[x.u] = x.fa;
            d[x.u] = x.du;
            d[x.v] = x.dv;
            --top;
        }
    }
    void update(int l, int r, int x, int a, int b, pair<int, int> o)
    {
        if(l > b || r < a) return;
        if(l >= a && r <= b)
        {
            tree[x].push_back(o);
            return;
        }
        int mid = (l + r) >> 1;
        update(l, mid, x << 1, a, b, o);
        update(mid + 1, r, x << 1 | 1, a, b, o);
    }
    void dfs(int l, int r, int x)
    {
        int now = top;
        for(int i = 0; i < tree[x].size(); ++i) unite(tree[x][i]);
        if(l == r)
        {
            for(int i = 0; i < q[l].size(); ++i)
            {
                pair<int, int> o = q[l][i];
                if(find(o.first) == find(o.second)) puts("Y");
                else puts("N");
            }
            del(now);
            return;
        }
        int mid = (l + r) >> 1;
        dfs(l, mid, x << 1);
        dfs(mid + 1, r, x << 1 | 1);
        del(now); 
    }
    int main()
    {
    //    freopen("bzoj_1018.in", "r", stdin);
    //    freopen("bzoj_1018.out", "w", stdout);
        memset(l, 0x3f3f, sizeof(l));
        c = read();
        for(int i = 1; i <= 2 * c; ++i)
        {
            fa[i] = i;
            d[i] = 1;
        }
        while(scanf("%s", opt))
        {
            if(opt[0] == 'E') break;
            ++tot;
            int r1 = read(), c1 = read(), r2 = read(), c2 = read(), u = id(r1, c1), v = id(r2, c2);
            if(u > v) swap(u, v);
            if(opt[0] == 'O')
            {        
                if(mp.find(make_pair(u, v)) != mp.end()) continue;
                l[++cnt] = tot;
                operation[cnt] = make_pair(u, v);
                mp[make_pair(u, v)] = cnt;
            }
            if(opt[0] == 'C') 
            {
                if(mp.find(make_pair(u, v)) == mp.end()) continue;
                r[mp[make_pair(u, v)]] = tot - 1;
                mp.erase(make_pair(u, v));
            }
            if(opt[0] == 'A') q[tot].push_back(make_pair(u, v));
        }
        for(int i = 1; i <= cnt; ++i) 
        {
            if(!r[i]) r[i] = tot;
            update(1, tot, 1, l[i], r[i], operation[i]);
        }
        dfs(1, tot, 1);
        for(int i = 1; i <= ask; ++i) if(ans[i]) puts("Y");
        else puts("N");
    //    fclose(stdin);
    //    fclose(stdout);
        return 0;
    } 
    View Code
  • 相关阅读:
    event的属性
    dom三个事件
    setInterval和setTimeout定时器
    eclipse编码格式设置
    eclipse Subversion Native Library Not Available
    NET Framework V4.0.30319
    eclipse配置tomcat
    eclipse Multiple annotations found at this line
    eclipse安装svn插件
    eclipse安装maven
  • 原文地址:https://www.cnblogs.com/19992147orz/p/7281414.html
Copyright © 2020-2023  润新知