• 斜率优化


    功能:一个万能的斜率优化模板 可以解决横坐标不单调 查询坐标不单调的问题

    斜率优化问题解决方法:
    斜率优化问题是当dp式类似$dp_i = dp_j + a_i * b_j$形式时无法左右分离i与j时的一种优化复杂度的方法。

    我们通过变换得到类似$y = k * x + b$形式,其中$x$和$y$是只关于$i$的项,$k$和$b$是只关于$j$的项。同时$dp_i$在$y$中,我们希望选择合适的$k$与$b$使得$y$最大或最小,从而使dp[i]最大或最小。

    于是我们需要维护一个直线集合$(k,b)$,当需要$dp_i$最大时直线集合形成下凸的凸包,反之则形成上凸的凸包,每次查询$query(x)$即可得出结果,加入直线则是$add(k,b)$,复杂度$O(nlogn)$。

    模板:

    namespace {
    struct Line {
    mutable ll k, m, p;
    bool f; // 存在斜率吗
    Line() {}
    Line(ll _k, ll _m, ll _p, bool _f) : k(_k), m(_m), p(_p), f(_f) {} 
    bool friend operator < (const Line &a, const Line &b) {
    return (a.f && b.f) ? a.k < b.k : a.p < b.p;
    }
    };
    struct LineContainer : multiset<Line> {
    //    LineContainer() {}
    const ll inf = LLONG_MAX;
    ll div(ll a, ll b) { //求交点
    return a / b - (a ^ b < 0 && a % b); 
    }
    ld div(ld a, ld b) {
    return a / b;
    }
    bool Intersect(iterator x, iterator y) {
    if(y == end()) {
    x -> p = inf;
    return false;
    }
    if(x -> k == y -> k) x -> p = x -> m > y -> m ? inf : -inf;
    else x -> p = div(y -> m - x -> m, x -> k - y -> k);
    return x -> p >= y -> p;
    }
    void add(ll k, ll m) {
    multiset<Line> :: iterator z = insert(Line(k, m, 0, 1)), y = z++, x = y;
    while(Intersect(y, z)) z = erase(z);
    if(x != begin() && Intersect(--x, y)) Intersect(x, y = erase(y));
    while((y = x) != begin() && (--x) -> p >= y -> p) Intersect(x, erase(y));
    }
    ll query(ll x) {
    //    assert(!empty());
    multiset<Line> :: iterator L = lower_bound(Line(0, 0, x, 0));
    return L -> k * x + L -> m;
    }
    };
    }
    View Code

    例题:
    Codeforces 631E
    大意:使得$sum_{i=1}^{n}{a_{i}*i}$最大,可以将一个$a_i$插入到任何一个位置
    题解:需要两次$dp$,没有差别,仅说明第一遍$dp$。

    枚举位置$i$,考虑移到位置$j$前面且 $j leq i$。$ans = max(tot + a_{i}*j-a_{i}*i+sum_{i-1}-sum_{j-1})$。化成$y = k * x + b$形式,得出$ans-tot-sum_{i-1}+a_{i}*i=a_{i}*j-sum_{j-1}$

    所以
    $k = j$
    $b = -sum_{j-1}$
    $x = a_i$
    $y = ans - tot - sum_{i-1} + a_{i} * i$
    维护下凸壳,具体见代码。答案即是$query(a_{i})+tot+sum_{i-1}-a_{i}*i$。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <set>
    #include <vector>
    using namespace std;
    typedef long long ll;
    typedef long double ld;
    namespace {
    struct Line {
    mutable ll k, m, p;
    bool f; // 存在斜率吗
    Line() {}
    Line(ll _k, ll _m, ll _p, bool _f) : k(_k), m(_m), p(_p), f(_f) {} 
    bool friend operator < (const Line &a, const Line &b) {
    return (a.f && b.f) ? a.k < b.k : a.p < b.p;
    }
    };
    struct LineContainer : multiset<Line> {
    //    LineContainer() {}
    const ll inf = LLONG_MAX;
    ll div(ll a, ll b) { //求交点
    return a / b - (a ^ b < 0 && a % b); 
    }
    ld div(ld a, ld b) {
    return a / b;
    }
    bool Intersect(iterator x, iterator y) {
    if(y == end()) {
    x -> p = inf;
    return false;
    }
    if(x -> k == y -> k) x -> p = x -> m > y -> m ? inf : -inf;
    else x -> p = div(y -> m - x -> m, x -> k - y -> k);
    return x -> p >= y -> p;
    }
    void add(ll k, ll m) {
    multiset<Line> :: iterator z = insert(Line(k, m, 0, 1)), y = z++, x = y;
    while(Intersect(y, z)) z = erase(z);
    if(x != begin() && Intersect(--x, y)) Intersect(x, y = erase(y));
    while((y = x) != begin() && (--x) -> p >= y -> p) Intersect(x, erase(y));
    }
    ll query(ll x) {
    //    assert(!empty());
    multiset<Line> :: iterator L = lower_bound(Line(0, 0, x, 0));
    return L -> k * x + L -> m;
    }
    };
    }
    const int maxn = 5e5 + 5;
    int n;
    ll tot, ans;
    ll a[maxn], sum[maxn];
    LineContainer H;
    int main() {
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i) {
    scanf("%lld", &a[i]);
    tot += a[i] * i;
    sum[i] = sum[i - 1] + a[i];
    }    
    ans = tot;
    for(int i = 1; i <= n; ++i) {
    if(!H.empty()) ans = max(ans, H.query(a[i]) + sum[i - 1] + tot - a[i] * i);
    H.add(1.0 * i, 1.0 * -sum[i - 1]);
    }
    H.clear();
    for(int i = n; i; --i) {
    if(!H.empty()) ans = max(ans, H.query(a[i]) + sum[i] + tot - a[i] * i);
    H.add(1.0 * i, 1.0 * -sum[i]);
    }    
    printf("%lld
    ", ans);
    return 0;
    }
    /*
    2 3 4 5 6
    5 2 3 4 6
    j = 2 i = 5 
    前后做两遍
    前: 向前移i移到j前面
    ans = max(tot + a[i] * j - a[i] * i + (sum[i - 1] - sum[j - 1]))
    = max(tot + a[i] * j - sum[i - 1] - a[i] * i + sum[j - 1]) j <= i
    y = k * x + b
    y 最大
    ans - tot - sum[i - 1] + a[i] * i = a[i] * j - sum[j - 1]
    x = a[i]
    y = ans - tot - sum[i - 1] + a[i] * i
    k = j
    b = -sum[j - 1]
    维护下凸包
    后:
    2 3 4 5 6
    3 4 5 2 6
    ans = max(tot + a[i] * j - a[i] * i + (sum[i] - sum[j]))
    */
    View Code
  • 相关阅读:
    C对字符串的部分操作
    <string> <string.h>
    最常见的HTTP错误
    python面试题
    玩转type类型(牛逼克拉斯 )
    django路由系统之反向生成url
    django事物回滚
    django中admin路由系统工作原理
    django中的django admin插件
    ajax跨域资源共享
  • 原文地址:https://www.cnblogs.com/19992147orz/p/11403427.html
Copyright © 2020-2023  润新知