• HDU 6762 Mow (2020 Multi-University Training Contest 1 1012) 半平面交


    Mow

    题目链接

    分析

    将多边形的边向内部缩 r 个单位长度,然后这些边所围成的内部区域,就是圆心的合法范围,该范围也是一个多边形,假设面积是(a),周长是(b),那么可以知道圆可以覆盖的面积是 (a + b * r + pi *r^2)。现在问题转换为了求这些边所围成的区域,这正是半平面交所要做的事情。

    需要用到的知识点:

    1. 极角排序
    2. 直线平移
    3. 直线求交点
    4. 单调队列求半平面交
    5. 多边形利用三角剖分求面积,求周长

    另外需要注意的是该题目精度有些卡,需要用longdouble,另外要注意一些常用函数后面加 l,比如acos要换成acosl,sqrt要换成sqrtl等。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int inf = 0x3f3f3f3f;
    #define dbg(x...) do { cout << "33[32;1m" << #x <<" -> "; err(x); } while (0)
    void err() { cout << "33[39;0m" << endl; }
    template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
    const int N = 200 + 5;
    
    typedef long double db;
    const db eps = 1e-12;
    const db pi = acosl(-1.0);
    
    int T, n;
    db A, B, r;
    int sgn(db x){
        if(fabs(x) < eps) return 0;
        if(x < 0) return -1;
        return 1;
    }
    
    inline db sqr(db x){return x * x;}
    struct Point{
        db x, y;
        Point(){}
        Point(db x, db y):x(x), y(y){}
        void input(){
            cin >> x >> y;
        }
        bool operator == (Point b) const {
            return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
        }
        bool operator < (Point b) const{
            return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
        }
        // 向量运算
        Point operator - (const Point &b) const{
            return Point(x - b.x, y - b.y);
        }
        Point operator + (const Point &b) const{
            return Point(x + b.x, y + b.y);
        }
        db operator ^ (const Point &b) const{
            return x * b.y - y * b.x;
        }
        db operator * (const Point &b) const{
            return x * b.x + y * b.y;
        }
        // 标量运算 * / 
        Point operator *(const db &k) const{
            return Point(x * k , y * k);
        }
        Point operator / (const db &k) const{
            return Point(x / k, y / k);
        }
    
        db len(){
            return sqrtl(x * x + y * y);
        }
        db len2(){
            return x * x + y * y;
        }
        db distance(Point p) {
            return (*this - p).len();
        }
    
        Point trunc(db r) {
            db l = len();
            if(sgn(l) == 0) return *this;
            return Point(x * r / l, y * r / l);
        }
        Point rotleft(){
            return Point(-y, x);
        }
        Point rotright(){
            return Point(y, -x);
        }
    }p[N];
    
    struct Line{
        Point s, e;
        Line(){}
        Line(Point s, Point e) : s(s), e(e){}
        void input(){
            s.input();e.input();
        }
        bool operator == (Line v){
            return (s == v.s) && (e == v.e);
        }
        db length() {
            return s.distance(e);
        }
        bool parallel(Line v){
            return sgn((e - s) ^ (v.e - v.s)) == 0;
        }
        Point crossPoint(Line v) {
            db a1 = (v.e - v.s) ^ (s - v.s);
            db a2 = (v.e - v.s) ^ (e - v.s);
            db t = a2 - a1;
            return Point((s.x * a2 - e.x * a1) / t, (s.y * a2 - e.y * a1) / t);
        }
    }l[N];
     
    struct Polygon{
        int n;
        Point p[N];
        Line l[N];
        void input(int n) {
            this->n = n;
            for(int i=0;i<n;i++) p[i].input();
        }
        db getCircumference(){
            db res = 0;
            for(int i=0;i<n;i++) res += p[i].distance(p[(i+1)%n]);
            return res;
        }
        db getArea(){
            db res = 0;
            for(int i=0;i<n;i++)res += (p[i] ^ p[(i+1)%n]);
            return fabs(res) / 2; 
        }
        struct cmp{
            Point p;
            cmp(const Point &p0) {p = p0;}
            bool operator()(const Point &aa, const Point &bb) {
                Point a = aa, b = bb;
                int d = sgn((a - p) ^ (b - p));
                if(d == 0) return sgn(a.distance(p) - b.distance(p)) < 0;
                return d > 0;
            }
        };
        void norm(){
            Point mi = p[0]; for(int i=1;i<n;i++) mi = min(mi, p[i]);
            sort(p, p+n, cmp(mi));
        }
    }lawn, poly;
    void adjust(){
        lawn.norm();
        for(int i=0;i<n;i++){
            Point a = lawn.p[i], b = lawn.p[(i+1)%n];
            Point aa = a + (b - a).rotleft().trunc(r);
            Point bb = b + (b - a).rotleft().trunc(r);
            l[i] = Line(aa, bb);
        }
    }
    bool getHalfPlanes(){
        Line q[N];
        Point t[N];
        int ll = 1, rr = 0;
        for(int i=0;i<n;i++){
            if(l[i] == l[(i-1+n)%n] || l[i].parallel(l[(i-1+n)%n]))continue;
            while(ll < rr && ((l[i].e - t[rr]) ^ (l[i].s - t[rr])) > eps) rr--;
            while(ll < rr && ((l[i].e - t[ll+1]) ^ (l[i].s - t[ll+1])) > eps) ll++;
            q[++rr] = l[i];
            if(ll < rr) t[rr] = q[rr].crossPoint(q[rr-1]);
        }
        while(ll < rr && ((q[ll].e - t[rr]) ^ (q[ll].s - t[rr])) > eps) rr--;
        t[rr+1] = q[ll].crossPoint(q[rr]);
        ++rr, ++ll;
        if(rr - ll + 1 <= 2) return false;
        poly.n = rr - ll + 1;
        for(int i=ll;i<=rr;i++) poly.p[i-ll] = t[i];
        return true;
    }
    int main(){
    #ifndef ONLINE_JUDGE
    freopen("i.in","r",stdin);
    //  freopen("o.out","w",stdout);
    #endif
        scanf("%d", &T);
        while(T--){
            scanf("%d", &n);
            cin >> r >> A >> B;
            lawn.input(n);
            adjust();
            db total = lawn.getArea();
            db res = total * A;
            if(getHalfPlanes()) {
                db area = poly.getArea();
                db length = poly.getCircumference();
                area = area + length * r + pi * r * r;
                res = min(res, area * B + (total - area) * A);
            }
            cout << fixed << setprecision(20) << res << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    Maven命令行使用:mvn clean package(打包)
    快速构建 Spring Boot 应用
    Spring MVC 表单处理
    Spring Web Hello World 例子
    Spring 事务管理
    开发环境搭建
    考研计算机专业课练习题
    考研计算机自测练习
    考研计算机自测练习答案
    考研计算机专业常见术语
  • 原文地址:https://www.cnblogs.com/1625--H/p/13368880.html
Copyright © 2020-2023  润新知