思维路线
目的是要链接互联网中的其他计算机
物理层 用物理介质链接其他计算机
数据链路层 用MAC地址来通讯,但仅限于同一局域网
网络层 用ip确定全球范围的某个局域网中的某一台计算机
传输层 用端口来确定 某一计算机中的某一个进程
应用层 组织自己的数据结构,例如json, xml等用于在两个应用程序间交换数据
网络通常指的是计算机中的互联网,是由多台计算机通过网线或其他媒介相互链接组成的。
编写基于网络的应用程序的过程序称之为网络编程。
我们把提供数据的一方称之为服务器(Server),把访问数据的一方称为客户端(Client)。
电脑上要看视频就需要装看视频的程序.例如腾讯视频,它就是客户端程序,腾讯公司的机房里运行着腾讯视频的服务器程序,所以它也是C/S构架的程序
另外浏览器也可以访问服务器上的网页数据,称之为B/S,其本质上也是C/S只不过客户端是浏览器。
1.物理连接介质
人类说话需要有空气来传播震动,眼睛要看东西需要有光来传播,没有空气,没有光,则无法沟通,(不要钻牛角尖,用手摸啥的...);光和空气就是物理介质。
再比如电话机 要打通电话则必须先接通电话线,电流才能沿着电话线到达另一台电话机,电话线则是物理介质。
2.通讯协议
什么是协议?
协议就是标准,大家要遵循相同的标准才能正常交流通讯
两个人要交流,必须说双方都能理解的语言,想象一下一个说新疆话的人打电话给说闽南语的人,基本说了等于没说 双方都能理解的语言就是,就是标准,就是协议
为什么要制定协议?
在计算机中,链接介质 通常是网线,网线本质就是一条电线,可以传播电流,而电流可以按照强弱,被理解为0和1
那问题是,一台计算机被电了一下是什么意思?被电了两下又是什么意思? 这就必须由发送方和接收方共同商定出一套标准,从而可以知道0和1表示的含义
如何使用协议?
然而作为应用程序开发者,物理介质显然不是我们需要关心的,比如如何牵网线
所以通讯协议是我们学习的重点。
三.网络通讯协议
协议是由发送方和接受方共同制定的,考虑到计算机已经发展了这么多年,所以制定的协议过程很显然我们没有机会参与了,要做的是了解通讯协议中的各种规定
OSI七层模型
1.什么是OSI
Open System Interconnection Reference Model,开放式系统互联通信参考模型,缩写为OSI,是由国际标准组织推出的,其实就是一大堆协议,OSI把整个通讯过程划分为七层,简称OSI七层模型。
后来又进行简化将应用层,会话层,表示层。综合成应用层。共五层:应用层,传输层,网络层,数据链路层,物理层。
ethernet规定如下:
一组电信号构成一个数据包,叫做‘帧’,每一数据帧分成:报头head和数据data两部分。
head包含:(固定18个字节)
-
发送者/源地址,6个字节
-
接收者/目标地址,6个字节
-
数据类型(标签+以太类型),6个字节
data包含:(最短46字节,最长1500字节)
-
数据包的具体内容
head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送
有了mac地址,同一网络内的两台主机就可以通信了
ethernet采用最原始的方式,广播的方式进行通信,即计算机通信基本靠吼
广播有什么问题吗?如果这个网络中有100台电脑,大家都在同一时间都在互相通讯,那是什么情况,
相当于村头挂着100个大喇叭,大家都在使劲喊,结果是要听清楚说的什么内容非常费劲儿
回到计算机中,100台电脑都在那儿广播,传输速度一定是有限的,严重浪费了网络资源
所以,处在局域网中间的设备即交换机(上图的中间那个小东西)
交换机不仅负责让网络中的计算机能够互相通信,还要优化网络传输,
如何优化呢?
当pc1想要与pc2通讯前
1.需要知道pc2的MAC地址,所以必须先将这个信息广播给所有的计算机,
2.这个信息必须先交给交换机,再由交换机广播出去,
3.pc2收到消息消息后发现目标MAC是自己,就回复数据给发送方,
4.而回复也必须先交给交换机,此时交换机就会记录pc2的MAC地址与网口号的对应关系存到自己的缓存中,
5.下一次在要给pc2发数据时从缓存中查找pc2的MAC地址,
6.如果找到了就直接单独给pc2发送,不在需要广播,
7.如果没有则重复之前的广播过程
这一优化功能称之为自动学习功能
第一次链接某计算机时 必须广播获取MAC地址
只要链接过一次 MAC地址就被交换机记录下了下一次就不用广播了
交换机的工作原理类似类似于早期的电话交换机,电话线打到总台,总台问你要找几号?,然后将电话线插到相应的口上
有了ethernet、mac地址、广播的发送方式,世界上的计算机就可以彼此通信了
世界范围的互联网是由一个个彼此隔离的小的局域网组成的,如果所有的计算机都采用以太网的广播方式来寻找其他计算机,那么一台机器发送的包全世界都会收到,这就不仅仅是效率低的问题了,这会是一种灾难,(广播风暴就是这么产生的)
结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,就采用路由的方式(向不同广播域/子网分发数据包),mac地址是无法区分的,它只跟厂商有关;
网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址,网络地址到底长什么样,又是如何区分子网的?
3.IP协议
IP协议是工作在网络层的协议,全称:Internet Protocol Address,翻译为互联网协议地址
3.1 IP地址(重点)
-
ip协议定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
-
范围0.0.0.0-255.255.255.255
-
一个ip地址通常写成四段十进制数,例:192.168.10.1
-
网络号:标识子网
-
主机号:标识主机
IP地址的分类:
A类保留给政府机构
1.0.0.0---126.0.0.0
B类分配给中等规模公司
128.0.0.0---191.255.0.0
C类分配给任何需要的人
192.168.0.1 - 192.168.255.254
D类用于组播
E类用于实验
我们的电脑ip通常都是C类的,以192.168开头,正因为C类任何人都可以用。
3.2 子网掩码(了解)
什么是子网掩码
子网掩码是一个32位地址,用于屏蔽IP地址的一部分以区别网络标识和主机标识,并说明该IP地址是在局域网上,还是在远程网上。
它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。
为什么需要子网掩码
单纯的ip地址段只是标识了ip地址的种类,无法辨识一个ip所处的子网 例:192.168.10.1与192.168.10.2并不能确定二者处于同一子网,因为不清楚哪些位表示网络号,哪些表示主机号
子网掩码如何判断两个ip是否属于同一个子网
知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。
案例: 已知IP地址172.16.10.1和172.16.10.2的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,
172.16.10.1:10101100.00010000.00001010.000000001
255255.255.255.0:11111111.11111111.11111111.00000000
AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
172.16.10.2:10101100.00010000.00001010.000000010
255255.255.255.0:11111111.11111111.11111111.00000000
AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
结果都是172.16.10.0,因此它们在同一个子网络。
总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。
3.3 IP数据包(了解)
ip数据包也分为head和data部分,无须为ip包定义单独的栏位,直接放入以太网包的data部分
head:长度为20到60字节
data:最长为65,515字节。
而以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据帧,分开发送了。
3.4 ARP协议(了解)
ARP协议的由来:IP是通常是动态分配的,是一个逻辑地址,而数据传输则必须依赖MAC地址,那如何才能通过IP得到对方的MAC地址呢? 这就需要ARP协议了
arp协议功能:广播的方式发送数据包,获取目标主机的mac地址
首先明确每台主机ip都是已知的,并可以通过子网掩码来判断是否属于同一子网
案例1:主机192.168.1.101访问192.168.1.102
是同一子网内 ARP请求帧内容:
1.FF:FF:FF:FF:FF:FF是一个特殊的MAC地址 交换机在看到这个地址时会将这个数据向网内所有主机进行广播
2.192.168.1.102 收到ARP请求后 回复自己的MAC给 源MAC主机
3.发送方(192.168.1.101)收到回复后,会将对方的ip的MAC地址映射关系存储到缓存中,以便下次使用
ps:arp -a 可以查看ARP缓存列表
确定对方MAC地址后的数据帧内容:
案例2:主机192.168.1.101访问192.168.111.101
交换机发现目标IP不在当前子网中,
1.交换机发起ARP请求,将目标IP设置为对方的网关IP,默认情况下,网关的主机号都为1; 所以接收方(192.168.111.101)的网关为192.168.111.1
发送方交换机发起的ARP数据帧:
2.对方网关收到请求后发现ip是自己的ip则回复ARP请求,将其MAC地址告知发送方交换机,
3.发送方交换机将,对方的网关与的MAC地址与IP存储到自己的ARP缓存中,
4.告知发送方(192.168.1.101)对方网关的MAC地址,发送方同样将对方网关MAC与目标IP映射关系存储到,本机ARP缓存中
至此ARP请求结束可以开始传输数据
后续确定了MAC地址后发送的数据帧内容:
总结:ARP通过广播的方式来获取MAC地址, 不在同一子网时 ARP得到的时对方网关的MAC地址,数据到达对方网关后,由网关根据IP交给对应的主机,当然对方网关获取主机MAC也是通过ARP
ps:路由器 交换机都可以称之为网关!
四.传输层(重点)
传输层的由来:
通过物理层简历链接通道
通过数据链路层的MAC,可以定位到某个局域网中的某台主机,
通过网络层的IP地址,子网掩码,可以定位到全球范围某一局域网下的某台主机
那么问题来了:
一台计算机上是不可能只运行一个应用程序的,比如同时登陆qq和微信,那接收到的数据到底是交给微信还是qq呢?
答案就是:端口号,端口是需要联网的应用程序与网卡关联的编号
传输层功能:建立端口到端口的通信
补充:端口范围0-65535,0-1023为系统占用端口
TCP与UDP是工作在传输层的协议:
TCP协议
可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。
TCP之所以可靠,是因为在传输数据前需要三次握手确认建立链接
三次握手:
三次握手的过程实际上实在确认我发的你能收到,你发的我也能收到,从而保证数据传输的的可靠性,
链接是一个虚拟的概念,不实际存在,只要三次握手成功即表示连接建立成功!
问题是三次握手时的确能保障数据传输是可靠的,那么握手后的数据要如何保证传输成功呢?
TCP协议要求在发送数据后,必须接收到对方的回复信息才能确认数据成功发送,如果一段时内没有收到回复信息,会自动重新发送,如果重试的次数过多则表示链接可能已经中断!
四次挥手:
四次挥手的目的是保证双方的数据传输已经全部完成,同样是为了保证数据的完整性
总结
其优点很明显:能够保证数据传输是完整的
缺点:由于每次都需要传输确认信息,导致传输效率降低
场景:多用于必须保证数据完整性的场景,例如文本信息,支付信息等!
UDP协议
不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。
UDP协议采取的方式与TCP完全不同,其根本不关心,对方是否收到数据,甚至不关心,对方的地址是否有效,只要将数据报发送到网络,便什么都不管了!
总结
优点:由于不需要传输确认信息,所以传输效率高于TCP协议
缺点:传输数据可能不完整
场景:视频聊天,语音聊天等,不要求数据完整性,但是对传输速度要求较高
五.应用层
应用层由来:用户使用的都是应用程序,均工作于应用层,互联网是开放的,大家都可以开发自己的应用程序,用什么样的数据格式来传输,就需要由应用程序开发者自己来制定
应用层功能:规定应用程序的数据格式。
例:TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”。
至此一连串高低电压就通过层层协议,变成了我们在应用程序中看到的各种数据
#