• poj 1523 SPF 求割点以及删除该割点后联通块的数量


    SPF
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7136   Accepted: 3255

    Description

    Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.
    Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate.

    Input

    The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

    Output

    For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.
    The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

    Sample Input

    1 2
    5 4
    3 1
    3 2
    3 4
    3 5
    0
    
    1 2
    2 3
    3 4
    4 5
    5 1
    0
    
    1 2
    2 3
    3 4
    4 6
    6 3
    2 5
    5 1
    0
    
    0

    Sample Output

    Network #1
      SPF node 3 leaves 2 subnets
    
    Network #2
      No SPF nodes
    
    Network #3
      SPF node 2 leaves 2 subnets
      SPF node 3 leaves 2 subnets

    Source

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int MAXN = 10010;
    const int MAXM = 100010;
    struct Edge
    {
        int to,next;
        bool cut;//是否为桥的标记
    } edge[MAXM];
    int head[MAXN],tot;
    int Low[MAXN],DFN[MAXN],Stack[MAXN];
    int Index,top;
    bool Instack[MAXN];
    bool cut[MAXN];
    int add_block[MAXN];//删除一个点后增加的连通块
    int bridge;
    void addedge(int u,int v)
    {
        edge[tot].to = v;
        edge[tot].next = head[u];
        edge[tot].cut = false;
        head[u] = tot++;
    }
    void Tarjan(int u,int pre)
    {
        int v;
        Low[u] = DFN[u] = ++Index;
        Stack[top++] = u;
        Instack[u] = true;
        int son = 0;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            v = edge[i].to;
            if(v == pre)continue;
            if( !DFN[v] )
            {
                son++;
                Tarjan(v,u);
                if(Low[u] > Low[v])Low[u] = Low[v];
                if(Low[v] > DFN[u])
                {
                    bridge++;
                    edge[i].cut = true;
                    edge[i^1].cut = true;
                }
                if(u != pre && Low[v] >= DFN[u])//不是树根
                {
                    cut[u] = true;
                    add_block[u]++;
                }
            }
            else if( Low[u] > DFN[v])
                Low[u] = DFN[v];
        }
    //树根,分支数大于1
        if(u == pre && son > 1)
            cut[u] = true;
        if(u == pre)
            add_block[u] = son - 1;
        Instack[u] = false;
        top--;
    }
    void solve(int N)
    {
        memset(DFN,0,sizeof(DFN));
        memset(Instack,0,sizeof(Instack));
        memset(add_block,0,sizeof(add_block));
        memset(cut,false,sizeof(cut));
        Index = top = 0;
        int cnt = 0;//原来的连通块数
        for(int i = 1; i <= N; i++)
            if( !DFN[i] )
            {
                Tarjan(i,i);//找割点调用必须是Tarjan(i,i)
                cnt++;
            }
        int ans = 0;
        bool flag=true;
        for(int i = 1; i <= N; i++){
                if(cut[i]==true){
                        flag=false;
                printf("  SPF node %d leaves %d subnets
    ",i,add_block[i]+1);
                }
        }
    
        if(flag)
            printf("  No SPF nodes
    ");
        puts("");
    }
    void init()
    {
        tot = 0;
        memset(head,-1,sizeof(head));
    }
    int main()
    {
        int n,m;
        int u,v;
        int cas=0;
        while(scanf("%d",&u)!=EOF)
        {
            cas++;
            if(u==0)
                break;
                  init();
            scanf("%d",&v);
                addedge(u,v);
                addedge(v,u);
          n=max(u,v);
            while(scanf("%d",&u)!=EOF){
                if(u==0)
                break;
                scanf("%d",&v);
                addedge(u,v);
                addedge(v,u);
                int temp=max(u,v);
                n=max(temp,n);
            }
            printf("Network #%d
    ",cas);
            solve(n);
        }
        return 0;
    }

     

     

  • 相关阅读:
    PHP-FPM 不完全指南
    【权限设计】如何以“权限”为单位的进行权限设计(二)
    【权限设计】如何以“用户”为单位的进行权限设计(一)
    【权限设计】一个案例,三个角色,简单说下B端产品的权限设计
    gdb调试报错:Missing separate debuginfos, use: debuginfo-install glibc-XXX
    java之 ------ 文件拷贝
    高速排序C++实现
    error: internal error: unable to execute QEMU command &#39;migrate&#39;: this feature or command is not cur
    MySQL查询报错 ERROR: No query specified
    广告倒计时欢迎界面的实现
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4781682.html
Copyright © 2020-2023  润新知