• 课堂测试-数据清洗1


    题目:

    Result文件数据说明:

    Ip106.39.41.166,(城市)

    Date10/Nov/2016:00:01:02 +0800,(日期)

    Day10,(天数)

    Traffic: 54 ,(流量)

    Type: video,(类型:视频video或文章article

    Id: 8701(视频或者文章的id

    测试要求:

    1、 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中

    两阶段数据清洗:

    1)第一阶段:把需要的信息从原始日志中提取出来

    ip:    199.30.25.88

    time:  10/Nov/2016:00:01:03 +0800

    traffic:  62

    文章: article/11325

    视频: video/3235

    1 2 4 5 6

    2)第二阶段:根据提取出来的信息做精细化操作

    ip--->城市 cityIP

    date--> time:2016-11-10 00:01:03

    day: 10

    traffic:62

    type:article/video

    id:11325

    3hive数据库表结构:

    create table data(  ip string,  time string , day string, traffic bigint,

    type string, id   string )

    2、数据处理:

    ·统计最受欢迎的视频/文章的Top10访问次数 (video/article

    ·按照地市统计最受欢迎的Top10课程 (ip

    ·按照流量统计最受欢迎的Top10课程 (traffic

    3、数据可视化:将统计结果倒入MySql数据库中,通过图形化展示的方式展现出来。

    完成情况:

    目前完成了第一步

    数据清洗代码:

     

     1 import java.io.IOException;
     2 import java.text.SimpleDateFormat;
     3 import java.util.Date;
     4 import java.util.Locale;
     5 
     6 import org.apache.hadoop.conf.Configuration;
     7 import org.apache.hadoop.fs.Path;
     8 import org.apache.hadoop.io.Text;
     9 import org.apache.hadoop.mapreduce.Job;
    10 import org.apache.hadoop.mapreduce.Mapper;
    11 import org.apache.hadoop.mapreduce.Reducer;
    12 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    13 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    14 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    15 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    16 import text.te.Map.Reduce;
    17 
    18 
    19 public class te {
    20     
    21     public static class Map extends Mapper<Object,Text,Text,Text>{
    22           public static final SimpleDateFormat FORMAT = new SimpleDateFormat("d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH); //原时间格式
    23         public static final SimpleDateFormat dateformat1 = new SimpleDateFormat("yyyy-MM-dd-HH:mm:ss");//现时间格式
    24         private  static Date parseDateFormat(String string) {         //转换时间格式
    25             Date parse = null;
    26             try {
    27                 parse = FORMAT.parse(string);
    28             } catch (Exception e) {
    29                 e.printStackTrace();
    30             }
    31             return parse;
    32         }
    33         private static Text newKey = new Text();
    34         private static Text newvalue = new Text();
    35         public void map(Object key,Text value,Context context) throws IOException, InterruptedException{
    36         String line = value.toString();
    37         System.out.println(line);
    38         String arr[] = line.split(",");
    39         newKey.set(arr[0]);
    40         final int first = arr[1].indexOf("");
    41         final int last = arr[1].indexOf(" +0800");
    42         String time = arr[1].substring(first + 1, last).trim();
    43         Date date = parseDateFormat(time);
    44        arr[1] = dateformat1.format(date);
    45         newvalue.set(arr[1]+" "+arr[2]+" "+arr[3]+" "+arr[4]+" "+arr[5]);
    46         context.write(newKey,newvalue);
    47         }
    48         
    49         public static class Reduce extends Reducer<Text, Text, Text, Text> {
    50             protected void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException {
    51                 for(Text text : values){
    52                     context.write(key,text);
    53                 }
    54             }
    55         }
    56     }
    57     public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    58         Configuration conf = new Configuration();
    59         System.out.println("start");
    60         Job job=Job.getInstance(conf); 
    61         job.setJobName("filter");
    62         job.setJarByClass(te.class);
    63         job.setMapperClass(Map.class);
    64         job.setReducerClass(Reduce.class);
    65         job.setOutputKeyClass(Text.class);
    66         job.setOutputValueClass(Text.class);        
    67         job.setInputFormatClass(TextInputFormat.class);
    68         job.setOutputFormatClass(TextOutputFormat.class);
    69         Path in=new Path("hdfs://localhost:9000/text/in/result");
    70         Path out=new Path("hdfs://localhost:9000/text/out");
    71         FileInputFormat.addInputPath(job, in);
    72         FileOutputFormat.setOutputPath(job, out);
    73         boolean flag = job.waitForCompletion(true);
    74         System.out.println(flag);
    75         System.exit(flag? 0 : 1);
    76     }
    77 }

     

        导入hive语句:

    CREATE EXTERNAL TABLE data(ip varchar(200),tme varchar(200),day varchar(200),traffic varchar(200),type varchar(200),id varchar(200)) COMMENT 'Welcome to xmu dblab!' ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS TEXTFILE LOCATION '/bigdatacase/dataset';
    OK

        结果截图:

  • 相关阅读:
    day11.初识函数
    day10.文件操作
    类,对象相关的部分系统函数
    网络资源
    mysql 设置默认时间为now()
    Meta http-equiv属性详解
    php 验证码
    php 图片上传 并返回上传文件位置 支持多文件上传
    图片懒加载
    mysqy 特别小点
  • 原文地址:https://www.cnblogs.com/123456www/p/11851624.html
Copyright © 2020-2023  润新知