• 杨辉三角


    杨辉三角:

    前提:每行端点与结尾的数为1.
    每个数等于它上方两数之和。
    每行数字左右对称,由1开始逐渐变大。
    第n行的数字有n项。
    第n行数字和为2n-1。
    第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
    第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
    每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)
    (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
    将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
    将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n>5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位... ...,以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=1110。
    public class TriangleArray
     {
        public static void main(String[] args)
        {
           final int NMAX = 10; 
           int[][] odds = new int[NMAX + 1][];                     //一个行数定了,列数未定的二维数组   11行      
           for (int n = 0; n <= NMAX; n++)                         //1行有1个数…11行11数
              odds[n] = new int[n + 1];   
           for (int n = 0; n < odds.length; n++)                   //列循环
              for (int k = 0; k < odds[n].length; k++)             //行循环
              {
                 int lotteryOdds = 1;
                 for (int i = 1; i <= k; i++)
                    lotteryOdds = lotteryOdds * (n - i + 1) / i;
      
                 odds[n][k] = lotteryOdds;
              }
           for (int[] row : odds)
           {
              for (int odd : row)
                 System.out.printf("%4d", odd);
              System.out.println();
           }
        }
    }
  • 相关阅读:
    VBScript的参数引用
    异常处理规范
    测试感悟
    URL重写
    避免重复记录
    EJB 异常处理探试法
    EJB 异常处理的最佳做法(1)
    使用vbscript脚本调用web服务
    用Dom4j解析XML及中文问题
    lucene简介
  • 原文地址:https://www.cnblogs.com/12344321hh/p/8658733.html
Copyright © 2020-2023  润新知