一、内置函数
高阶函数map/reduce
map()
函数接收两个参数,一个是函数,一个是Iterable
,map
将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator
返回。
举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]
上,就可以用map()
实现如下:
现在,我们用Python代码实现:
>>> def f(x): ... return x * x ... >>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> list(r) [1, 4, 9, 16, 25, 36, 49, 64, 81]
map()
传入的第一个参数是f
,即函数对象本身。由于结果r
是一个Iterator
,Iterator
是惰性序列,因此通过list()
函数让它把整个序列都计算出来并返回一个list。
你可能会想,不需要map()
函数,写一个循环,也可以计算出结果:
L = [] for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]: L.append(f(n)) print(L)
的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?
所以,map()
作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9])) ['1', '2', '3', '4', '5', '6', '7', '8', '9']
只需要一行代码。
再看reduce
的用法。reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
比方说对一个序列求和,就可以用reduce
实现:
>>> from functools import reduce >>> def add(x, y): ... return x + y ... >>> reduce(add, [1, 3, 5, 7, 9]) 25
当然求和运算可以直接用Python内建函数sum()
,没必要动用reduce
。
但是如果要把序列[1, 3, 5, 7, 9]
变换成整数13579
,reduce
就可以派上用场:
>>> from functools import reduce >>> def fn(x, y): ... return x * 10 + y ... >>> reduce(fn, [1, 3, 5, 7, 9]) 13579
这个例子本身没多大用处,但是,如果考虑到字符串str
也是一个序列,对上面的例子稍加改动,配合map()
,我们就可以写出把str
转换为int
的函数:
>>> from functools import reduce >>> def fn(x, y): ... return x * 10 + y ... >>> def char2num(s): ... return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s] ... >>> reduce(fn, map(char2num, '13579')) 13579
整理成一个str2int
的函数就是:
from functools import reduce def str2int(s): def fn(x, y): return x * 10 + y def char2num(s): return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s] return reduce(fn, map(char2num, s))
还可以用lambda函数进一步简化成:
from functools import reduce def char2num(s): return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s] def str2int(s): return reduce(lambda x, y: x * 10 + y, map(char2num, s))
二、匿名函数
当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。
匿名函数没有函数名,只使用一次。
在Python中,对匿名函数提供了有限支持。还是以map()
函数为例,计算f(x)=x2时,除了定义一个f(x)
的函数外,还可以直接传入匿名函数:
>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])) [1, 4, 9, 16, 25, 36, 49, 64, 81]
通过对比可以看出,匿名函数lambda x: x * x
实际上就是:
def f(x): return x * x
关键字lambda
表示匿名函数,冒号前面的x
表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return
,返回值就是该表达式的结果。
用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x >>> f <function <lambda> at 0x101c6ef28> >>> f(5) 25
同样,也可以把匿名函数作为返回值返回,比如:
def build(x, y): return lambda: x * x + y * y
三、递归
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n
,用函数fact(n)
表示,可以看出:
fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n
所以,fact(n)
可以表示为n x fact(n-1)
,只有n=1时需要特殊处理。
于是,fact(n)
用递归的方式写出来就是:
def fact(n): if n==1: return 1 return n * fact(n - 1)
上面就是一个递归函数。可以试试:
>>> fact(1) 1 >>> fact(5) 120 >>> fact(100) 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
如果我们计算fact(5)
,可以根据函数定义看到计算过程如下:
===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000)
:
>>> fact(1000) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<stdin>", line 4, in fact ... File "<stdin>", line 4, in fact RuntimeError: maximum recursion depth exceeded in comparison
解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
上面的fact(n)
函数由于return n * fact(n - 1)
引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:
def fact(n): return fact_iter(n, 1) def fact_iter(num, product): if num == 1: return product return fact_iter(num - 1, num * product)
可以看到,return fact_iter(num - 1, num * product)
仅返回递归函数本身,num - 1
和num * product
在函数调用前就会被计算,不影响函数调用。
fact(5)
对应的fact_iter(5, 1)
的调用如下:
===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
===> 120
尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)
函数改成尾递归方式,也会导致栈溢出。
def age(n): if n == 5: return 18 return age(n+1)+2 print(age(1))
l=[1,[2,3,[4,5,[6,7,[8,9,[10,11,[12,13]]]]]]] def func(l): for i in l: if isinstance(i,list): func(i) else: print(i) func(l)