• Hadoop上的中文分词与词频统计实践 (有待学习 http://www.cnblogs.com/jiejue/archive/2012/12/16/2820788.html)


    Hadoop上的中文分词与词频统计实践

    首先来推荐相关材料:http://xiaoxia.org/2011/12/18/map-reduce-program-of-rmm-word-count-on-hadoop/。小虾的这个统计武侠小说人名热度的段子很有意思,照虎画猫来实践一下。

    与其不同的地方有:

      0)其使用Hadoop Streaming,这里使用MapReduce框架。

      1)不同的中文分词方法,这里使用IKAnalyzer,主页在http://code.google.com/p/ik-analyzer/

      2)这里的材料为《射雕英雄传》。哈哈,总要来一些改变。

    0)使用WordCount源代码,修改其Map,在Map中使用IKAnalyzer的分词功能。

    复制代码
    import java.io.IOException;
    import java.io.InputStream;
    import java.io.InputStreamReader;
    import java.io.Reader;
    import java.io.ByteArrayInputStream;
    
    import org.wltea.analyzer.core.IKSegmenter;
    import org.wltea.analyzer.core.Lexeme;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class ChineseWordCount {
        
          public static class TokenizerMapper 
               extends Mapper<Object, Text, Text, IntWritable>{
            
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
              
            public void map(Object key, Text value, Context context
                            ) throws IOException, InterruptedException {
                
                byte[] bt = value.getBytes();
                InputStream ip = new ByteArrayInputStream(bt);
                Reader read = new InputStreamReader(ip);
                IKSegmenter iks = new IKSegmenter(read,true);
                Lexeme t;
                while ((t = iks.next()) != null)
                {
                    word.set(t.getLexemeText());
                    context.write(word, one);
                }
            }
          }
      
      public static class IntSumReducer 
           extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();
    
        public void reduce(Text key, Iterable<IntWritable> values, 
                           Context context
                           ) throws IOException, InterruptedException {
          int sum = 0;
          for (IntWritable val : values) {
            sum += val.get();
          }
          result.set(sum);
          context.write(key, result);
        }
      }
    
      public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 2) {
          System.err.println("Usage: wordcount <in> <out>");
          System.exit(2);
        }
        Job job = new Job(conf, "word count");
        job.setJarByClass(ChineseWordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
      }
    }
    复制代码

    1)So,完成了,本地插件模拟环境OK。打包(带上分词包)扔到集群上。

    复制代码
    hadoop fs -put chinese_in.txt chinese_in.txt
    hadoop jar WordCount.jar chinese_in.txt out0
    
    ...mapping reducing...
    
    hadoop fs -ls ./out0
    hadoop fs -get part-r-00000 words.txt
    复制代码

    2)数据后处理:

    2.1)数据排序

    复制代码
    head words.txt
    tail words.txt
    
    
    sort -k2 words.txt >0.txt
    head 0.txt
    tail 0.txt
    sort -k2r words.txt>0.txt
    head 0.txt
    tail 0.txt
    sort -k2rn words.txt>0.txt
    head -n 50 0.txt
    复制代码

    2.2)目标提取

    awk '{if(length($1)>=2) print $0}' 0.txt >1.txt

    2.3)结果呈现

    head 1.txt -n 50 | sed = | sed 'N;s/
    //'
    复制代码
    1郭靖   6427
    2黄蓉   4621
    3欧阳   1660
    4甚么   1430
    5说道   1287
    6洪七公 1225
    7笑道   1214
    8自己   1193
    9一个   1160
    10师父  1080
    11黄药师        1059
    12心中  1046
    13两人  1016
    14武功  950
    15咱们  925
    16一声  912
    17只见  827
    18他们  782
    19心想  780
    20周伯通        771
    21功夫  758
    22不知  755
    23欧阳克        752
    24听得  741
    25丘处机        732
    26当下  668
    27爹爹  664
    28只是  657
    29知道  654
    30这时  639
    31之中  621
    32梅超风        586
    33身子  552
    34都是  540
    35不是  534
    36如此  531
    37柯镇恶        528
    38到了  523
    39不敢  522
    40裘千仞        521
    41杨康  520
    42你们  509
    43这一  495
    44却是  478
    45众人  476
    46二人  475
    47铁木真        469
    48怎么  464
    49左手  452
    50地下  448
    复制代码

    在非人名词中有很多很有意思,如:5说道7笑道12心中17只见22不知30这时49左手。

  • 相关阅读:
    机器学习之支持向量机
    C++ 踩的坑
    C++ 虚析构函数
    Linux 离线安装软件
    samba配置问题
    字符串相关函数总结
    printf(),类型修饰符
    getopt()和getopt_long()用法
    关于GDB使用
    关于C语言宏定义 使用do{ xxxx }while()
  • 原文地址:https://www.cnblogs.com/1130136248wlxk/p/5143530.html
Copyright © 2020-2023  润新知