• Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗


    Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗

    网站日志分析项目案例(一)项目介绍:http://www.cnblogs.com/edisonchou/p/4449082.html

    网站日志分析项目案例(二)数据清洗:当前页面

    网站日志分析项目案例(三)统计分析:http://www.cnblogs.com/edisonchou/p/4464349.html

    一、数据情况分析

    1.1 数据情况回顾

      该论坛数据有两部分:

      (1)历史数据约56GB,统计到2012-05-29。这也说明,在2012-05-29之前,日志文件都在一个文件里边,采用了追加写入的方式。

      (2)自2013-05-30起,每天生成一个数据文件,约150MB左右。这也说明,从2013-05-30之后,日志文件不再是在一个文件里边。

      图1展示了该日志数据的记录格式,其中每行记录有5部分组成:访问者IP、访问时间、访问资源、访问状态(HTTP状态码)、本次访问流量。

    log

    图1 日志记录数据格式

      本次使用数据来自于两个2013年的日志文件,分别为access_2013_05_30.log与access_2013_05_31.log,下载地址为:http://pan.baidu.com/s/1pJE7XR9

    1.2 要清理的数据

      (1)根据前一篇的关键指标的分析,我们所要统计分析的均不涉及到访问状态(HTTP状态码)以及本次访问的流量,于是我们首先可以将这两项记录清理掉;

      (2)根据日志记录的数据格式,我们需要将日期格式转换为平常所见的普通格式如20150426这种,于是我们可以写一个类将日志记录的日期进行转换;

      (3)由于静态资源的访问请求对我们的数据分析没有意义,于是我们可以将"GET /staticsource/"开头的访问记录过滤掉,又因为GET和POST字符串对我们也没有意义,因此也可以将其省略掉;

    二、数据清洗过程

    2.1 定期上传日志至HDFS

      首先,把日志数据上传到HDFS中进行处理,可以分为以下几种情况:

      (1)如果是日志服务器数据较小、压力较小,可以直接使用shell命令把数据上传到HDFS中;

      (2)如果是日志服务器数据较大、压力较大,使用NFS在另一台服务器上上传数据;

      (3)如果日志服务器非常多、数据量大,使用flume进行数据处理;

      这里我们的实验数据文件较小,因此直接采用第一种Shell命令方式。又因为日志文件时每天产生的,因此需要设置一个定时任务,在第二天的1点 钟自动将前一天产生的log文件上传到HDFS的指定目录中。所以,我们通过shell脚本结合crontab创建一个定时任务 techbbs_core.sh,内容如下:

    #!/bin/sh

    #step1.get yesterday format string
    yesterday=$(date --date='1 days ago' +%Y_%m_%d)
    #step2.upload logs to hdfs
    hadoop fs -put /usr/local/files/apache_logs/access_${yesterday}.log /project/techbbs/data

      结合crontab设置为每天1点钟自动执行的定期任务:crontab -e,内容如下(其中1代表每天1:00,techbbs_core.sh为要执行的脚本文件):

    * 1 * * * techbbs_core.sh

      验证方式:通过命令 crontab -l 可以查看已经设置的定时任务

    2.2 编写MapReduce程序清理日志

      (1)编写日志解析类对每行记录的五个组成部分进行单独的解析

    复制代码
        static class LogParser {
            public static final SimpleDateFormat FORMAT = new SimpleDateFormat(
                    "d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH);
            public static final SimpleDateFormat dateformat1 = new SimpleDateFormat(
                    "yyyyMMddHHmmss");/**
             * 解析英文时间字符串
             * 
             * @param string
             * @return
             * @throws ParseException
             */
            private Date parseDateFormat(String string) {
                Date parse = null;
                try {
                    parse = FORMAT.parse(string);
                } catch (ParseException e) {
                    e.printStackTrace();
                }
                return parse;
            }
    
            /**
             * 解析日志的行记录
             * 
             * @param line
             * @return 数组含有5个元素,分别是ip、时间、url、状态、流量
             */
            public String[] parse(String line) {
                String ip = parseIP(line);
                String time = parseTime(line);
                String url = parseURL(line);
                String status = parseStatus(line);
                String traffic = parseTraffic(line);
    
                return new String[] { ip, time, url, status, traffic };
            }
    
            private String parseTraffic(String line) {
                final String trim = line.substring(line.lastIndexOf(""") + 1)
                        .trim();
                String traffic = trim.split(" ")[1];
                return traffic;
            }
    
            private String parseStatus(String line) {
                final String trim = line.substring(line.lastIndexOf(""") + 1)
                        .trim();
                String status = trim.split(" ")[0];
                return status;
            }
    
            private String parseURL(String line) {
                final int first = line.indexOf(""");
                final int last = line.lastIndexOf(""");
                String url = line.substring(first + 1, last);
                return url;
            }
    
            private String parseTime(String line) {
                final int first = line.indexOf("[");
                final int last = line.indexOf("+0800]");
                String time = line.substring(first + 1, last).trim();
                Date date = parseDateFormat(time);
                return dateformat1.format(date);
            }
    
            private String parseIP(String line) {
                String ip = line.split("- -")[0].trim();
                return ip;
            }
        }
    复制代码

      (2)编写MapReduce程序对指定日志文件的所有记录进行过滤

      Mapper类:

    复制代码
            static class MyMapper extends
                Mapper<LongWritable, Text, LongWritable, Text> {
            LogParser logParser = new LogParser();
            Text outputValue = new Text();
    
            protected void map(
                    LongWritable key,
                    Text value,
                    org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, LongWritable, Text>.Context context)
                    throws java.io.IOException, InterruptedException {
                final String[] parsed = logParser.parse(value.toString());
    
                // step1.过滤掉静态资源访问请求
                if (parsed[2].startsWith("GET /static/")
                        || parsed[2].startsWith("GET /uc_server")) {
                    return;
                }
                // step2.过滤掉开头的指定字符串
                if (parsed[2].startsWith("GET /")) {
                    parsed[2] = parsed[2].substring("GET /".length());
                } else if (parsed[2].startsWith("POST /")) {
                    parsed[2] = parsed[2].substring("POST /".length());
                }
                // step3.过滤掉结尾的特定字符串
                if (parsed[2].endsWith(" HTTP/1.1")) {
                    parsed[2] = parsed[2].substring(0, parsed[2].length()
                            - " HTTP/1.1".length());
                }
                // step4.只写入前三个记录类型项
                outputValue.set(parsed[0] + "	" + parsed[1] + "	" + parsed[2]);
                context.write(key, outputValue);
            }
        }
    复制代码

      Reducer类:

    复制代码
        static class MyReducer extends
                Reducer<LongWritable, Text, Text, NullWritable> {
            protected void reduce(
                    LongWritable k2,
                    java.lang.Iterable<Text> v2s,
                    org.apache.hadoop.mapreduce.Reducer<LongWritable, Text, Text, NullWritable>.Context context)
                    throws java.io.IOException, InterruptedException {
                for (Text v2 : v2s) {
                    context.write(v2, NullWritable.get());
                }
            };
        }
    复制代码

      (3)LogCleanJob.java的完整示例代码

    View Code

      (4)导出jar包,并将其上传至Linux服务器指定目录中

    2.3 定期清理日志至HDFS

      这里我们改写刚刚的定时任务脚本,将自动执行清理的MapReduce程序加入脚本中,内容如下:

    #!/bin/sh

    #step1.get yesterday format string
    yesterday=$(date --date='1 days ago' +%Y_%m_%d)
    #step2.upload logs to hdfs
    hadoop fs -put /usr/local/files/apache_logs/access_${yesterday}.log /project/techbbs/data
    #step3.clean log data
    hadoop jar /usr/local/files/apache_logs/mycleaner.jar /project/techbbs/data/access_${yesterday}.log /project/techbbs/cleaned/${yesterday}

      这段脚本的意思就在于每天1点将日志文件上传到HDFS后,执行数据清理程序对已存入HDFS的日志文件进行过滤,并将过滤后的数据存入cleaned目录下。 

    2.4 定时任务测试

      (1)因为两个日志文件是2013年的,因此这里将其名称改为2015年当天以及前一天的,以便这里能够测试通过。

      (2)执行命令:techbbs_core.sh 2014_04_26

      控制台的输出信息如下所示,可以看到过滤后的记录减少了很多:

    15/04/26 04:27:20 INFO input.FileInputFormat: Total input paths to process : 1
    15/04/26 04:27:20 INFO util.NativeCodeLoader: Loaded the native-hadoop library
    15/04/26 04:27:20 WARN snappy.LoadSnappy: Snappy native library not loaded
    15/04/26 04:27:22 INFO mapred.JobClient: Running job: job_201504260249_0002
    15/04/26 04:27:23 INFO mapred.JobClient: map 0% reduce 0%
    15/04/26 04:28:01 INFO mapred.JobClient: map 29% reduce 0%
    15/04/26 04:28:07 INFO mapred.JobClient: map 42% reduce 0%
    15/04/26 04:28:10 INFO mapred.JobClient: map 57% reduce 0%
    15/04/26 04:28:13 INFO mapred.JobClient: map 74% reduce 0%
    15/04/26 04:28:16 INFO mapred.JobClient: map 89% reduce 0%
    15/04/26 04:28:19 INFO mapred.JobClient: map 100% reduce 0%
    15/04/26 04:28:49 INFO mapred.JobClient: map 100% reduce 100%
    15/04/26 04:28:50 INFO mapred.JobClient: Job complete: job_201504260249_0002
    15/04/26 04:28:50 INFO mapred.JobClient: Counters: 29
    15/04/26 04:28:50 INFO mapred.JobClient: Job Counters
    15/04/26 04:28:50 INFO mapred.JobClient: Launched reduce tasks=1
    15/04/26 04:28:50 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=58296
    15/04/26 04:28:50 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
    15/04/26 04:28:50 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
    15/04/26 04:28:50 INFO mapred.JobClient: Launched map tasks=1
    15/04/26 04:28:50 INFO mapred.JobClient: Data-local map tasks=1
    15/04/26 04:28:50 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=25238
    15/04/26 04:28:50 INFO mapred.JobClient: File Output Format Counters
    15/04/26 04:28:50 INFO mapred.JobClient: Bytes Written=12794925
    15/04/26 04:28:50 INFO mapred.JobClient: FileSystemCounters
    15/04/26 04:28:50 INFO mapred.JobClient: FILE_BYTES_READ=14503530
    15/04/26 04:28:50 INFO mapred.JobClient: HDFS_BYTES_READ=61084325
    15/04/26 04:28:50 INFO mapred.JobClient: FILE_BYTES_WRITTEN=29111500
    15/04/26 04:28:50 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=12794925
    15/04/26 04:28:50 INFO mapred.JobClient: File Input Format Counters
    15/04/26 04:28:50 INFO mapred.JobClient: Bytes Read=61084192
    15/04/26 04:28:50 INFO mapred.JobClient: Map-Reduce Framework
    15/04/26 04:28:50 INFO mapred.JobClient: Map output materialized bytes=14503530
    15/04/26 04:28:50 INFO mapred.JobClient: Map input records=548160
    15/04/26 04:28:50 INFO mapred.JobClient: Reduce shuffle bytes=14503530
    15/04/26 04:28:50 INFO mapred.JobClient: Spilled Records=339714
    15/04/26 04:28:50 INFO mapred.JobClient: Map output bytes=14158741
    15/04/26 04:28:50 INFO mapred.JobClient: CPU time spent (ms)=21200
    15/04/26 04:28:50 INFO mapred.JobClient: Total committed heap usage (bytes)=229003264
    15/04/26 04:28:50 INFO mapred.JobClient: Combine input records=0
    15/04/26 04:28:50 INFO mapred.JobClient: SPLIT_RAW_BYTES=133
    15/04/26 04:28:50 INFO mapred.JobClient: Reduce input records=169857
    15/04/26 04:28:50 INFO mapred.JobClient: Reduce input groups=169857
    15/04/26 04:28:50 INFO mapred.JobClient: Combine output records=0
    15/04/26 04:28:50 INFO mapred.JobClient: Physical memory (bytes) snapshot=154001408
    15/04/26 04:28:50 INFO mapred.JobClient: Reduce output records=169857
    15/04/26 04:28:50 INFO mapred.JobClient: Virtual memory (bytes) snapshot=689442816
    15/04/26 04:28:50 INFO mapred.JobClient: Map output records=169857
    Clean process success!

      (3)通过Web接口查看HDFS中的日志数据:

      存入的未过滤的日志数据:/project/techbbs/data/

      存入的已过滤的日志数据:/project/techbbs/cleaned/

  • 相关阅读:
    Redis学习——数据结构下
    CI 笔记7,easyui 异步加载
    CI 笔记,借鉴的4个辅助自定义函数
    CI笔记6 json 传值
    CI 笔记,使用 json的参考文档(废弃)
    CI 笔记5 (CI3.0 默认控制器,多目录)
    CI 笔记(easyui js命令)
    CI 笔记4 (easyui 手风琴)
    CI 笔记3 (easyui 的layout布局,最小化layout原型)
    CI 笔记3 (easyui 和 js 排错)
  • 原文地址:https://www.cnblogs.com/1130136248wlxk/p/4975169.html
Copyright © 2020-2023  润新知