• dtoi4548「HNOI2016」大数


    题意:

         小 $B$ 有一个很大的数 $S$,长度达到了 $N$ 位;这个数可以看成是一个串,它可能有前导 $0$,例如 $00009312345$。小 $B$ 还有一个素数 $P$。

         现在,小 $B$ 提出了 $M$ 个询问,每个询问求 $S$ 的一个子串中有多少子串是 $P$ 的倍数($0$ 也是 $P$ 的倍数)。例如 $S$ 为 $0077$ 时,其子串 $007$ 有六个子串:$0, 0, 7, 00, 07, 007$。显然 $0077$ 的子串 $077$ 的六个子串都是素数 $77$ 的倍数。

         $N,M<=10^5$,$P<=10^9$

    题解:

         如果直接求一个序列的答案,发现并不好求。于是考虑求以 $l$ 为左端点(右端点类似)所造成的贡献,显然,当满足 $frac{s[r]-s[l-1]}{10^{n-r}}=0 (mod p)$,就找到了一个合法的区间($s[i]$ 表示由前 $i$ 个数和后 $n-i$ 个 $0$ 构成的数字)。这样我们发现,假设我们已知一个区间的答案,可以做到 $O(1)$ 移动一个单位的端点。而我们要求的,实际上就是区间中等于某个数的位置个数。可以将其离散化之后,用莫队+桶维护。

         当 $p=5$ 或 $p=2$ 时需要特殊处理,可以发现此时的数字只与个位数有关,随便维护一下就好了。

    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #include<cstdlib>
    using namespace std;
    int mod,n,m,fk,s[100002],sn[100002],num[100002],t[100002],cf[100002];
    long long ans[100002],nans;
    char ch[100002];
    typedef struct{
        int l,r,num;
    }P;
    bool cmp(P aa,P bb){
        return (aa.l/fk<bb.l/fk || aa.l/fk==bb.l/fk && aa.r<bb.r);
    }
    P p[100002]; 
    int main()
    {
        scanf("%d%s%d",&mod,ch+1,&m);n=strlen(ch+1);fk=sqrt(n); 
        for (int i=1;i<=m;i++)
        {
            scanf("%d%d",&p[i].l,&p[i].r);p[i].num=i;
        }
        sort(p+1,p+m+1,cmp);
        if (mod==2)
        {
            int l=p[1].l,r=p[1].l;
            if ((ch[l]-'0')%mod==0)nans=1;else nans=0;
            num[ch[l]-'0']++;
            for (int i=1;i<=m;i++)
            {
                while(l>p[i].l)
                {
                    l--;
                    num[ch[l]-'0']++;nans+=num[0]+num[2]+num[4]+num[6]+num[8];
                }
                while(r<p[i].r)
                {
                    r++;
                    num[ch[r]-'0']++;if ((ch[r]-'0')%2==0)nans+=r-l+1;
                }
                while(l<p[i].l)
                {
                    nans-=num[0]+num[2]+num[4]+num[6]+num[8];num[ch[l]-'0']--;
                    l++;
                }
                while(r>p[i].r)
                {
                    if ((ch[r]-'0')%2==0)nans-=r-l+1;num[ch[r]-'0']--;
                    r--;
                }
                ans[p[i].num]=nans;
            }
            for (int i=1;i<=m;i++)printf("%lld
    ",ans[i]);
            return 0;
        }
        else if (mod==5)
        {
            int l=p[1].l,r=p[1].l;
            if ((ch[l]-'0')%mod==0)nans=1;else nans=0;
            num[ch[l]-'0']++;
            for (int i=1;i<=m;i++)
            {
                while(l>p[i].l)
                {
                    l--;
                    num[ch[l]-'0']++;nans+=num[0]+num[5];
                }
                while(r<p[i].r)
                {
                    r++;
                    num[ch[r]-'0']++;if ((ch[r]-'0')%5==0)nans+=r-l+1;
                }
                while(l<p[i].l)
                {
                    nans-=num[0]+num[5];num[ch[l]-'0']--;
                    l++;
                }
                while(r>p[i].r)
                {
                    if ((ch[r]-'0')%5==0)nans-=r-l+1;num[ch[r]-'0']--;
                    r--;
                }
                ans[p[i].num]=nans;
            }
            for (int i=1;i<=m;i++)printf("%lld
    ",ans[i]);
            return 0;
        }
        cf[0]=1;
        for (int i=1;i<=n;i++)cf[i]=(long long)cf[i-1]*10%mod;
        for (int i=1;i<=n;i++)t[i]=s[i]=(s[i-1]+(long long)(ch[i]-'0')*cf[n-i])%mod;
        t[n+1]=0;sort(t+1,t+n+2);
        for (int i=0;i<=n;i++)sn[i]=lower_bound(t+1,t+n+2,s[i])-t;
        int l=p[1].l,r=p[1].l;
        if ((ch[l]-'0')%mod==0)nans=1;else nans=0;
        num[sn[l]]++;
        for (int i=1;i<=m;i++)
        {
            while(l>p[i].l)
            {
                l--;
                num[sn[l]]++;nans+=num[sn[l-1]];
            }
            while(r<p[i].r)
            {
                r++;
                num[sn[r]]++;nans+=num[sn[r]]-1+(sn[l-1]==sn[r]);
            }
            while(l<p[i].l)
            {
                nans-=num[sn[l-1]];num[sn[l]]--;
                l++;
            }
            while(r>p[i].r)
            {
                nans-=num[sn[r]]-1+(sn[l-1]==sn[r]);num[sn[r]]--;
                r--;
            }
            ans[p[i].num]=nans;
        }
        for (int i=1;i<=m;i++)printf("%lld
    ",ans[i]);
        return 0;
    }
  • 相关阅读:
    常量
    html5+css3 background-clip 技巧
    AJAX小结
    使用jquery来完成AJAX操作
    linux命令 cp 递归复制 带权限复制
    html标记语言 --超链接
    html标记语言 --图像标记
    html标记语言 --文本标记
    [转]linux如何修改文件或目录的权限(chmod)
    html标记语言 --格式标记
  • 原文地址:https://www.cnblogs.com/1124828077ccj/p/14397920.html
Copyright © 2020-2023  润新知