参考博客:http://www.cnblogs.com/llhthinker/p/6719779.html
学习的别人的代码,用Python实现的Apriori算法,算法介绍见https://www.cnblogs.com/1113127139aaa/p/9926507.html
内容是实现Apriori算法的流程,数据是简单的测试数组,因为自己比较菜所以仅是为了自己复习写了很水的注释,如果有像我一样的小白可以参考,先把完成的部分贴上来,原博客有原来博主的注释
def load_data_set(): """ 加载一个示例集合 Returns: A data set: 一个购物列表,每个项中有不同的商品item """ data_set = [['l1', 'l2', 'l5'], ['l2', 'l4'], ['l2', 'l3'], ['l1', 'l2', 'l4'], ['l1', 'l3'], ['l2', 'l3'], ['l1', 'l3'], ['l1', 'l2', 'l3', 'l5'], ['l1', 'l2', 'l3']] return data_set def create_C1(data_set): """ 扫描数据集,创建元素个数为1的项集C1,作为频繁项集的候选项集C1 """ C1 = set() for t in data_set: for item in t: item_set = frozenset([item]) """ 由于要使用字典(support_data)记录项集的支持度,需要用项集作为key, 而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。 或者另一种用法: for item in t: C1.append([item]) C1.sort() return map(frozenset,C1) """ C1.add(item_set) return C1 def is_apriori(Ck_item, Lksub1): """ 进行剪枝,如果满足APriori,即满足支持度,返回True 否则返回False,删除 """ for item in Ck_item: sub_Ck = Ck_item - frozenset([item]) if sub_Ck not in Lksub1: return False return True def create_Ck(Lksub1, k): """ 由Lk-1生成Ck 具体实现方法是在Lk-1中,对所有两个项集之间只有最后一项item不同的项集的交集 """ Ck = set() len_Lksub1 = len(Lksub1) list_Lksub1 = list(Lksub1) for i in range(len_Lksub1): for j in range(1, len_Lksub1): l1 = list(list_Lksub1[i]) l2 = list(list_Lksub1[j]) l1.sort() l2.sort() if l1[0:k-2] == l2[0:k-2]: Ck_item = list_Lksub1[i] | list_Lksub1[j] #求并集 # 剪枝 if is_apriori(Ck_item, Lksub1): Ck.add(Ck_item) return Ck def generate_Lk_by_Ck(data_set, Ck, min_support, support_data): """ 由候选频繁k项集Ck生成频繁k项集Lk 主要内容是对Ck中的每个项集计算支持度,去掉不满足最低支持度的项集 返回Lk,记录support_data """ Lk = set() item_count = {} for t in data_set: #扫描所有商品,计算候选频繁项集C中项集的支持度,t为订单 for item in Ck: #item为C中的项集 if item.issubset(t): #如果C中的项集是t订单的子集 if item not in item_count: #如果item_count中还没有这个项集,计数为1 item_count[item] = 1 else: #如果item_count中已经有了这个项集,计数加1 item_count[item] += 1 t_num = float(len(data_set)) #t_num,订单总数 for item in item_count: #item_count中已经有了所有的候选项集,计算支持度 if (item_count[item] / t_num) >= min_support: Lk.add(item) #满足最小支持度的项集add进频繁项集Lk中 support_data[item] = item_count[item] / t_num #记录支持度,返回Lk return Lk def generate_L(data_set, k, min_support): """ 生成频繁集Lk,通过调用generate_Lk_by_Ck 从C1开始共进行k轮迭代,将每次生成的Lk都append到L中,同时记录支持度support_data """ support_data = {} C1 = create_C1(data_set) #生成C1 L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data) #由C1生成L1,调用generate_Lk_by_Ck函数 Lksub1 = L1.copy() L = [] L.append(Lksub1) for i in range(2, k+1): #由k已知进行重复迭代 Ci = create_Ck(Lksub1, i) #由Lk生成Lk+1,调用create_Ck函数 Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data) Lksub1 = Li.copy() L.append(Lksub1) return L, support_data def generate_big_rules(L, support_data, min_conf): """ Generate big rules from frequent itemsets. Args: L: The list of Lk. support_data: A dictionary. The key is frequent itemset and the value is support. min_conf: Minimal confidence. Returns: big_rule_list: A list which contains all big rules. Each big rule is represented as a 3-tuple. """ big_rule_list = [] sub_set_list = [] for i in range(0, len(L)): for freq_set in L[i]: for sub_set in sub_set_list: if sub_set.issubset(freq_set): conf = support_data[freq_set] / support_data[freq_set - sub_set] big_rule = (freq_set - sub_set, sub_set, conf) if conf >= min_conf and big_rule not in big_rule_list: # print freq_set-sub_set, " => ", sub_set, "conf: ", conf big_rule_list.append(big_rule) sub_set_list.append(freq_set) return big_rule_list if __name__ == "__main__": #主程序入口 """ Test """ data_set = load_data_set() #加载测试数据集 L, support_data = generate_L(data_set, k=3, min_support=0.2) #数据集中最大商品数为3,给定默认最低支持度为0.2,调用generate_L函数 big_rules_list = generate_big_rules(L, support_data, min_conf=0.7) for Lk in L: print ("="*50) print ("frequent " + str(len(list(Lk)[0])) + "-itemsets support") print ("="*50) for freq_set in Lk: print (freq_set, support_data[freq_set]) #print频繁k项集和支持度 print print ("Big Rules") for item in big_rules_list: print (item[0], "=>", item[1], "conf: ", item[2])