• 两遍Dijkstra算法 HDU-3499


    Flight

    Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a trip to some other city to avoid meeting her. He will travel only by air and he can go to any city if there exists a flight and it can help him reduce the total cost to the destination. There's a problem here: Shua Shua has a special credit card which can reduce half the price of a ticket ( i.e. 100 becomes 50, 99 becomes 49. The original and reduced price are both integers. ). But he can only use it once. He has no idea which flight he should choose to use the card to make the total cost least. Can you help him?

    InputThere are no more than 10 test cases. Subsequent test cases are separated by a blank line. 
    The first line of each test case contains two integers N and M ( 2 <= N <= 100,000 

    0 <= M <= 500,000 ), representing the number of cities and flights. Each of the following M lines contains "X Y D" representing a flight from city X to city Y with ticket price D ( 1 <= D <= 100,000 ). Notice that not all of the cities will appear in the list! The last line contains "S E" representing the start and end city. X, Y, S, E are all strings consisting of at most 10 alphanumeric characters. 
    OutputOne line for each test case the least money Shua Shua have to pay. If it's impossible for him to finish the trip, just output -1.Sample Input

    4 4
    Harbin Beijing 500
    Harbin Shanghai 1000
    Beijing Chengdu 600
    Shanghai Chengdu 400
    Harbin Chengdu
    
    4 0
    Harbin Chengdu

    Sample Output

    800
    -1
    

    Hint

    In the first sample, Shua Shua should use the card on the flight from
     Beijing to Chengdu, making the route Harbin->Beijing->Chengdu have the
     least total cost 800. In the second sample, there's no way for him to get to 
    Chengdu from Harbin, so -1 is needed. 
            
     题意:给出两个城市间的飞机票价格,可以使其中之一价格减半,给出目的地和出发地,求将某一个航班机票价格减半后的最小花费。
    注意:花费会超int,所以用long long,在设置INF时不能设成0x3f3f3f3f,可以用const long long inf=999999999999,但是这样无法用memset将dis数组初始化,可以用fill,写法:
    fill(dis,dis+maxn,inf)。注意飞机是单行的。
    思路:枚举每条路径上的每一个航班花费,将其减半,使用双向的Dijkstra(),求出从出发地到某条道路的dis,以及从目的地到该道路的dis,将该道路的权值减半,for循环枚举全部。
      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<queue>
      5 #include<algorithm>
      6 #include<map>
      7 using namespace std;
      8 const int maxn=1000010;
      9 const long long inf=99999999999;
     10 int head[maxn],vis[maxn];
     11 long long dis1[maxn],dis2[maxn];
     12 int n,m,cnt;
     13 struct node{
     14     int pos;
     15     long long cost;
     16     node(){}
     17     node(int pos,long long cost):pos(pos),cost(cost){}
     18     friend bool operator < (node a,node b)
     19     {
     20         return a.cost>b.cost;
     21     }
     22 };
     23 struct edge{
     24     int to;
     25     int next;
     26     long long w;
     27 }e[maxn];
     28 void init1()
     29 {
     30     memset(head,-1,sizeof(head));
     31     memset(vis,0,sizeof(vis));
     32     fill(dis1,dis1+maxn,inf);
     33     cnt=0;
     34 }
     35 void init2()
     36 {
     37     cnt=0;
     38     memset(head,-1,sizeof(head));
     39     memset(vis,0,sizeof(vis));
     40     fill(dis2,dis2+maxn,inf);
     41 }
     42 void add(int x,int y,long long w)
     43 {
     44     e[cnt].to=y;
     45     e[cnt].w=w;
     46     e[cnt].next=head[x];
     47     head[x]=cnt++; 
     48 }
     49 void dijkstra(int sx)
     50 {
     51     priority_queue<node> q;
     52     q.push(node(sx,0));
     53     dis1[sx]=0;
     54     while(!q.empty())
     55     {
     56         node u=q.top();
     57         q.pop();
     58         if(vis[u.pos])
     59             continue;
     60         vis[u.pos]=1;
     61         for(int i=head[u.pos];i!=-1;i=e[i].next)
     62         {
     63             int v=e[i].to;
     64             if(dis1[v]>dis1[u.pos]+e[i].w)
     65             {
     66                 dis1[v]=dis1[u.pos]+e[i].w;
     67                 q.push(node(v,dis1[v]));
     68             }
     69         }
     70     }
     71 }
     72 void dijkstra2(int sx)
     73 {
     74     priority_queue<node> q;
     75     q.push(node(sx,0));
     76     dis2[sx]=0;
     77     while(!q.empty())
     78     {
     79         node u=q.top();q.pop();
     80         if(vis[u.pos])
     81             continue;
     82             
     83         vis[u.pos]=1;
     84         for(int i=head[u.pos];i!=-1;i=e[i].next)
     85         {
     86             int v=e[i].to;
     87             if(dis2[v]>dis2[u.pos]+e[i].w)
     88             {
     89                 dis2[v]=dis2[u.pos]+e[i].w;
     90                 q.push(node(v,dis2[v]));
     91             }
     92         }
     93     }
     94 }
     95 int u[maxn],v[maxn];
     96 long long wei[maxn];
     97 string a,b;
     98 int main()
     99 {
    100     int sx,ex;
    101     int n,m;
    102     while(~scanf("%d%d",&n,&m))
    103     {
    104         init1();
    105         int id=0;
    106         map<string,int >mp;
    107         for(int i=1;i<=m;i++)
    108         {
    109             cin>>a>>b>>wei[i];
    110             if(!mp.count(a))
    111                 mp[a]=id++;
    112             if(!mp.count(b))
    113                 mp[b]=id++;
    114             u[i]=mp[a];
    115             v[i]=mp[b];
    116             add(u[i],v[i],wei[i]); 
    117         } 
    118         cin>>a>>b;
    119         if(!mp.count(a))
    120             mp[a]=id++;
    121         if(!mp.count(b))
    122             mp[b]=id++;
    123         sx=mp[a];
    124         ex=mp[b];
    125         dijkstra(sx);
    126         if(dis1[ex]==inf)
    127         {
    128             printf("-1
    ");
    129         } 
    130         else
    131         {
    132             long long ans=inf;
    133             init2();
    134             for(int i=1;i<=m;i++)
    135             {
    136                 add(v[i],u[i],wei[i]);
    137             }
    138             dijkstra2(ex);
    139             for(int i=1;i<=m;i++)
    140             {
    141                 ans=min(ans,dis1[u[i]]+dis2[v[i]]+wei[i]/2);
    142             }
    143             cout<<ans<<endl;
    144         }
    145     }
    146 return 0;
    147 }


  • 相关阅读:
    事件总线Guava EventBus
    DDD—实体和值对象
    DDD—子域和限界上下文
    DDD—什么是领域驱动设计
    DDD—微服务,中台建设为什么需要领域驱动设计
    RabbitMQ 中的 7 种队列模式
    10w 行级别数据的 Excel 导入优化记录
    Java 反射是什么?
    21 条常用 Linux 命令
    一个 java 文件的执行过程
  • 原文地址:https://www.cnblogs.com/1013star/p/9434474.html
Copyright © 2020-2023  润新知