很有趣的一道题。
首先可以对每个叶子进行编号。按照DFS到的顺序即可。(假设从 $1$ 到 $k$)
然后对每个点求出它管辖的所有叶子的编号。因为是DFS序所以这一定是个区间。设点 $u$ 的这个区间是 $[l_u,r_u]$。
区间加操作,考虑差分,那么每个点的操作就变成了 $l_u$ 加一个数,$r_u+1$ 减一个数。(此时也要考虑 $k+1$)
那么题目要求就变成了所有数都变成 $0$。
感受一下,把 $(l_u,r_u+1,c_u)$ 看做一条带权边,那么当且仅当选择的边构成连通图时满足要求。
那么就变成最小生成树了。
时间复杂度 $O(nlog n)$。
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn=200020; #define FOR(i,a,b) for(int i=(a);i<=(b);i++) #define ROF(i,a,b) for(int i=(a);i>=(b);i--) #define MEM(x,v) memset(x,v,sizeof(x)) inline int read(){ int x=0,f=0;char ch=getchar(); while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar(); while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar(); return f?-x:x; } struct edge{ int u,v,w,id; bool operator<(const edge &e)const{ return w<e.w; } }e[maxn]; int n,c[maxn],el,head[maxn],to[maxn*2],nxt[maxn*2],el2; int lft[maxn],rig[maxn],dfn[maxn],dfs_clock,ccc,fa[maxn],at[maxn],sss[maxn],al; bool good[maxn]; ll ans; inline void add(int u,int v){ to[++el]=v;nxt[el]=head[u];head[u]=el; } int getfa(int x){ return x==fa[x]?x:fa[x]=getfa(fa[x]); } void dfs(int u,int f){ dfn[u]=++dfs_clock; lft[u]=n+1;rig[u]=0; for(int i=head[u];i;i=nxt[i]){ int v=to[i]; if(v==f) continue; dfs(v,u); lft[u]=min(lft[u],lft[v]); rig[u]=max(rig[u],rig[v]); } if(!rig[u]) lft[u]=rig[u]=++ccc; } int main(){ n=read(); FOR(i,1,n) c[i]=read(); FOR(i,1,n-1){ int u=read(),v=read(); add(u,v);add(v,u); } dfs(1,0); FOR(i,1,n) e[++el2]=(edge){lft[i],rig[i]+1,c[i],i}; sort(e+1,e+el2+1); FOR(i,1,ccc) fa[i]=i; FOR(i,1,el2){ int j=i; while(j<=el2 && e[j].w==e[i].w) j++; j--; FOR(k,i,j){ int u=e[k].u,v=e[k].v; u=getfa(u);v=getfa(v); if(u!=v) good[e[k].id]=true,al++; } FOR(k,i,j){ int u=e[k].u,v=e[k].v; u=getfa(u);v=getfa(v); if(u!=v) fa[u]=v,ans+=e[k].w; } i=j; } cout<<ans<<" "<<al<<endl; FOR(i,1,n) if(good[i]) printf("%d ",i); }