• 05


    一、词频统计:

    1.读文本文件生成RDD lines

    lines = sc.textFile('file:///home/hadoop/word.txt')

    2.将一行一行的文本分割成单词 words flatmap()

    words=lines.flatMap(lambda line:line.split())
    words.collect()

    3.全部转换为小写 lower()

    words=lines.flatMap(lambda line:line.lower().split())
    words.collect()

    4.去掉长度小于3的单词 filter()

    words=words.filter(lambda word:len(word)>3)
    words.collect()

    5.去掉停用词

    复制代码
    复制代码
    with open('/home/hadoop/stopwords.txt') as f:
         stops=f.read().split()
    
    words=words.filter(lambda word:word not in stops)
    words.count()
    words.collect()
    复制代码
    复制代码

    6.转换成键值对 map()

    words=words.map(lambda word:(word,1))

    7.统计词频 reduceByKey()

    words=words.reduceByKey(lambda a,b:a+b)

    8.按字母顺序排序 sortBy(f)

    words=words.sortBy(lambda word:word[0])
    words.collect()

    9.按词频排序 sortByKey()

    words=words.sortByKey()
    words.collect()

    10.结果文件保存 saveAsTextFile(out_url)

    words.saveAsTextFile("file:///home/hadoop/out.txt")

    二、学生课程分数案例

    lines = sc.textFile('file:///home/hadoop/chapter4-data01.txt')
    lines.take(5)

    1.总共有多少学生?map(), distinct(), count()

    lines.map(lambda line : line.split(',')[0]).distinct().count()

    2.开设了多少门课程?

    lines.map(lambda line : line.split(',')[1]).distinct().count()

    3.每个学生选修了多少门课?map(), countByKey()

    lines.map(lambda line : line.split(',')).map(lambda line:(line[0],(line[1],line[2]))).countByKey()

    4.每门课程有多少个学生选?map(), countByValue()

    lines.map(lambda line : line.split(',')).map(lambda line : (line[1])).countByValue()

    5.Les选修了几门课?每门课多少分?filter(), map() RDD

    lines.filter(lambda line:"Les" in line).map(lambda line:line.split(',')).collect()

    6.Les选修了几门课?每门课多少分?map(),lookup()  list

    lines.map(lambda line:line.split(',')).map(lambda line:(line[0],line[1])).lookup("Les")
    lines.map(lambda line:line.split(',')).map(lambda line:(line[0],line[2])).lookup("Les")

    7.Les的成绩按分数大小排序。filter(), map(), sortBy()

    lines.filter(lambda line:"Les" in line).map(lambda line:line.split(',')).sortBy(lambda line:(line[2])).collect()

    8.Les的平均分。map(),lookup(),mean()

    import numpy as np
    meanlist=lines.map(lambda line:line.split(',')).map(lambda line:(line[0],line[2])).lookup("Les")
    np.mean([int(x) for x in meanlist])

    9.生成(课程,分数)RDD,观察keys(),values()

    lines = sc.textFile('file:///home/hadoop/chapter4-data01.txt')
    words = lines.map(lambda line:line.split(',')).map(lambda line:(line[1],line[2]))
    words.keys().take(5)
    words.values().take(5)

    10.每个分数+5分。mapValues(func)

    words.mapValues(lambda x:int(x)+5).foreach(print)

    11.求每门课的选修人数及所有人的总分。combineByKey()

    course = words.combineByKey(lambda v:(int(v),1),lambda c,v:(c[0]+int(v),c[1]+1),lambda c1,c2:(c1[0]+c2[0],c1[1]+c2[1]))

    12.求每门课的选修人数及平均分,精确到2位小数。map(),round()

    course.map(lambda x:(x[0],x[1][1],round(x[1][0]/x[1][1],2))).collect()

    13.求每门课的选修人数及平均分。用reduceByKey()实现,并比较与combineByKey()的异同。

    lines.map(lambda line:line.split(',')).map(lambda x:(x[1],(int(x[2]),1))).reduceByKey(lambda a,b:(a[0]+b[0],a[1]+b[1])).foreach(print)

     

  • 相关阅读:
    窗口生效函数UpdateData
    查找内容grep命令
    终止函数 atexit()
    根据名字杀死进程Killall
    修改系统时间为UTC时间
    转 proc文件
    NTP算法
    转载,网线的深刻理解
    js完成密码输入为空,和两次输入不一致
    CSS初步了解
  • 原文地址:https://www.cnblogs.com/0311Chrome/p/14699822.html
Copyright © 2020-2023  润新知