• spark streaming学习


    1 spark streaming

    1.1 Spark Streaming 介绍

    批量计算

     流计算

    1.2 Spark Streaming 入门

     Netcat 的使用

     项目实例

    目标:使用 Spark Streaming 程序和 Socket server 进行交互, 从 Server 处获取实时传输过来的字符串, 拆开单词并统计单词数量, 最后打印出来每一个小批次的单词数量

     步骤: 

    package cn.itcast.streaming

    import org.apache.spark.SparkConf
    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
    import org.apache.spark.streaming.{Seconds, StreamingContext}

    object StreamingWordCount {

    def main(args: Array[String]): Unit = {
    //1.初始化
    val sparkConf=new SparkConf().setAppName("streaming").setMaster("local[2]")
    val ssc=new StreamingContext(sparkConf,Seconds(5))
    ssc.sparkContext.setLogLevel("WARN")

    val lines: ReceiverInputDStream[String] = ssc.socketTextStream(
    hostname = "192.168.31.101",
    port = 9999,
    storageLevel = StorageLevel.MEMORY_AND_DISK_SER
    )
    //2.数据处理
    //2.1把句子拆单词
    val words: DStream[String] =lines.flatMap(_.split(" "))
    val tuples: DStream[(String, Int)] =words.map((_,1))
    val counts: DStream[(String, Int)] =tuples.reduceByKey(_+_)

    //3.展示
    counts.print()

    ssc.start()

    ssc.awaitTermination()


    }

    }

    开始进行交互:

    注意:

    Spark Streaming 并不是真正的来一条数据处理一条

    Spark Streaming 的处理机制叫做小批量, 英文叫做 mini-batch, 是收集了一定时间的数据后生成 RDD, 后针对 RDD 进行各种转换操作, 这个原理提现在如下两个地方

    • 控制台中打印的结果是一个批次一个批次的, 统计单词数量也是按照一个批次一个批次的统计
    • 多长时间生成一个 RDD 去统计呢? 由 new StreamingContext(sparkConf, Seconds(1)) 这段代码中的第二个参数指定批次生成的时间

    Spark Streaming 中至少要有两个线程

    在使用 spark-submit 启动程序的时候, 不能指定一个线程

    • 主线程被阻塞了, 等待程序运行
    • 需要开启后台线程获取数据

    1.3 各种算子


     

    • 这些算子类似 RDD, 也会生成新的 DStream

    • 这些算子操作最终会落到每一个 DStream 生成的 RDD 中

    算子释义

    flatMap

    lines.flatMap(_.split(" "))

    将一个数据一对多的转换为另外的形式, 规则通过传入函数指定

    map

    words.map(x => (x, 1))

    一对一的转换数据

    reduceByKey

    words.reduceByKey(_ + _)

    这个算子需要特别注意, 这个聚合并不是针对于整个流, 而是针对于某个批次的数据

    Structured Streaming

    2.1 Spark 编程模型的进化过程


    编程模型解释

    RDD

    rdd.flatMap(_.split(" ")) .map((_, 1)) .reduceByKey(_ + _) .collect
    • 针对自定义数据对象进行处理, 可以处理任意类型的对象, 比较符合面向对象

    • RDD 无法感知到数据的结构, 无法针对数据结构进行编程

    DataFrame

    spark.read .csv("...") .where($"name" =!= "") .groupBy($"name") .show()
    • DataFrame 保留有数据的元信息, API 针对数据的结构进行处理, 例如说可以根据数据的某一列进行排序或者分组

    • DataFrame 在执行的时候会经过 Catalyst 进行优化, 并且序列化更加高效, 性能会更好

    • DataFrame 只能处理结构化的数据, 无法处理非结构化的数据, 因为 DataFrame 的内部使用 Row 对象保存数据

    • Spark 为 DataFrame 设计了新的数据读写框架, 更加强大, 支持的数据源众多

    Dataset

    spark.read .csv("...") .as[Person] .where(_.name != "") .groupByKey(_.name) .count() .show()
    • Dataset 结合了 RDD 和 DataFrame 的特点, 从 API 上即可以处理结构化数据, 也可以处理非结构化数据

    • Dataset 和 DataFrame 其实是一个东西, 所以 DataFrame 的性能优势, 在 Dataset 上也有

    2.2 Spark Streaming 和 Structured Streaming


    Spark Streaming 时代

    20190628010204
    • Spark Streaming 其实就是 RDD 的 API 的流式工具, 其本质还是 RDD, 存储和执行过程依然类似 RDD

    Structured Streaming 时代

    20190628010542
    • Structured Streaming 其实就是 Dataset 的 API 的流式工具, API 和 Dataset 保持高度一致

    Spark Streaming 和 Structured Streaming

    • Structured Streaming 相比于 Spark Streaming 的进步就类似于 Dataset 相比于 RDD 的进步

    • 另外还有一点, Structured Streaming 已经支持了连续流模型, 也就是类似于 Flink 那样的实时流, 而不是小批量, 但在使用的时候仍然有限制, 大部分情况还是应该采用小批量模式

    在 2.2.0 以后 Structured Streaming 被标注为稳定版本, 意味着以后的 Spark 流式开发不应该在采用 Spark Streaming 了

    2.1 Structured Streaming 入门案例


    需求

    20190628144128
    • 编写一个流式计算的应用, 不断的接收外部系统的消息

    • 对消息中的单词进行词频统计

    • 统计全局的结果

    步骤:

    package cn.itcast.structured


    import org.apache.spark.sql.streaming.OutputMode
    import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

    object SocketWordCount {

    def main(args: Array[String]): Unit = {

    //1.创建SparkSession
    val spark=SparkSession.builder().master("local[5]")
    .appName("structured")
    .getOrCreate()

    spark.sparkContext.setLogLevel("WARN")
    import spark.implicits._

    //2.数据集的生成,数据读取
    val source: DataFrame =spark.readStream
    .format("socket")
    .option("host","192.168.31.101")
    .option("port",9999)
    .load()

    val sourceDS: Dataset[String] = source.as[String]

    //3.数据的处理
    val words=sourceDS.flatMap(_.split(" "))
    .map((_,1))
    .groupByKey(_._1)
    .count()
    //4.结果集的生成和输出
    words.writeStream
    .outputMode(OutputMode.Complete())
    .format("console")
    .start()
    .awaitTermination()


    }

    }

    交互结果:

     

    从结果集中可以观察到以下内容

    • Structured Streaming 依然是小批量的流处理

    • Structured Streaming 的输出是类似 DataFrame 的, 也具有 Schema, 所以也是针对结构化数据进行优化的

    • 从输出的时间特点上来看, 是一个批次先开始, 然后收集数据, 再进行展示, 这一点和 Spark Streaming 不太一样

    2.1 从 HDFS 中读取数据


    使用 Structured Streaming 整合 HDFS, 从其中读取数据的能力

    步骤

    1. 案例结构

    2. 产生小文件并推送到 HDFS

    3. 流式计算统计 HDFS 上的小文件

    4. 运行和总结

    实验步骤:

    Step1:利用py产生文件源源不断向hdfs上传文件

    Step2:编写 Structured Streaming 程序处理数据

    py代码:

    import os

    for index in range(100):

    content = """
    {"name": "Michael"}
    {"name": "Andy", "age": 30}
    {"name": "Justin", "age": 19}
    """


    file_name = "/export/dataset/text{0}.json".format(index)


    with open(file_name, "w") as file:
    file.write(content)


    os.system("/export/servers/hadoop-2.7.5/bin/hdfs dfs -mkdir -p /dataset/dataset/")
    os.system("/export/servers/hadoop-2.7.5/bin/hdfs dfs -put {0} /dataset/dataset/".format(file_name))

    spark处理流式文件

    package cn.itcast.structured

    import org.apache.spark.SparkContext
    import org.apache.spark.sql.SparkSession
    import org.apache.spark.sql.streaming.OutputMode
    import org.apache.spark.sql.types.{StructField, StructType}

    object HDFSSource {

    def main(args: Array[String]): Unit = {

    System.setProperty("hadoop.home.dir","C:\winutil")

    //1.创建SparkSession
    val spark=SparkSession.builder()
    .appName("hdfs_source")
    .master("local[6]")
    .getOrCreate()

    //2.数据读取
    val schema=new StructType()
    .add("name","string")
    .add("age","integer")
    val source=spark.readStream
    .schema(schema)
    .json("hdfs://hadoop101:8020/dataset/dataset")

    //3.输出结果
    source.writeStream
    .outputMode(OutputMode.Append())
    .format("console")
    .start()
    .awaitTermination()

    }

    }

    总结

    20190715111534
    1. Python 生成文件到 HDFS, 这一步在真实环境下, 可能是由 Flume 和 Sqoop 收集并上传至 HDFS

    2. Structured Streaming 从 HDFS 中读取数据并处理

    3. Structured Streaming 讲结果表展示在控制台

    转载自:https://www.cnblogs.com/xiaofengzai/p/14284502.html

  • 相关阅读:
    VScode出现无法打开“X”: 找不到文件(file:///XXXX) 的解决办法
    Re:0通过服务器自建内网穿透远程桌面(10分钟可完成)
    (补题 POJ 3013) Big Christmas Tree
    (补题 cf 1140)Detective Book
    (2019.9.5~2019.9.11)补题汇总(字符串相关)
    最小生成树(克鲁斯卡尔算法)
    最短路问题
    字符串匹配(部分整理)
    Linux内核分析——第八周学习笔记
    《Linux内核设计与实现》第四章读书笔记
  • 原文地址:https://www.cnblogs.com/022414ls/p/14459432.html
Copyright © 2020-2023  润新知