• POJ 3070 Fibonacci 【矩阵快速幂】


    <题目链接>

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

     解题分析:

    由于n很大,所以直接计算时不可行的,可以用矩阵快速幂来加速,并且,此题直接给出了矩阵的递推式,于是,我们只要按照题意构造矩阵即可。

    #include <cstdio>
    #include <cstring>
    
    const int mod=10000;
    
    struct Matrix{
        int m[5][5];
        Matrix(){}
        Matrix(int x,int y,int z,int k){
            m[0][0]=x;
            m[0][1]=y;
            m[1][0]=z;
            m[1][1]=k;
        }
    };
    
    
    Matrix Mul(Matrix a,Matrix b){
        Matrix temp;
        for(int i=0;i<2;i++){
            for(int j=0;j<2;j++){
                temp.m[i][j]=0;
                for(int k=0;k<2;k++){
                    temp.m[i][j]=(temp.m[i][j]+a.m[i][k]%mod*b.m[k][j]%mod)%mod;
                }
            }
        }
        return temp;
    }
    
    Matrix pow_Mul(Matrix x,int c){
        Matrix tmp(1,0,0,1);
        while(c>0){
            if(c&1){
                tmp=Mul(tmp,x);
            }
            c>>=1;
            x=Mul(x,x);
        }
        return tmp;
    }
    
    int main(){
        int n;
        while(scanf("%d",&n)!=EOF){
            if(n==-1)break;
            int f[]={0,1,1,2};
            if(n<=3){
                printf("%d
    ",f[n]);
                continue;
            }
            Matrix init(f[3],f[2],f[2],f[1]);
            Matrix tmp(1,1,1,0);
            Matrix ans=Mul(pow_Mul(tmp,n-3),init);
            printf("%d
    ",ans.m[0][0]%mod);
        }
        return 0;
    }

    2018-08-21

  • 相关阅读:
    Docker 文档编译
    Docker CentOS 安装方法
    Docker CentOS 安装要求
    Docsify 的文档页面标题在那里设置
    Docsify 的 GitHub 链接在那里设置的
    GitHub 中如何启用 GitHub Pages 中的子域名
    Spring API 的 CORS 测试 提示错误 Reason: header ‘authorization’ is not allowed
    Spring API 的 CORS 测试
    CentOS 7 安装 JDK 11
    Postman API 获得文件如何保存
  • 原文地址:https://www.cnblogs.com/00isok/p/9509565.html
Copyright © 2020-2023  润新知