Number Sequence
Given two sequences of numbers : a[1], a[2], …… , a[N], and b[1], b[2], …… , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], …… , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], …… , a[N]. The third line contains M integers which indicate b[1], b[2], …… , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
题解:kmp算法,模板题;
全当做记模板。
#include <stdio.h> #include <stdlib.h> #include <string.h> int s[1000010], t[10010]; int next[10010]; int Kmp(int * s, int n, int * t, int m) { int i = 0, j = 0; while(i < n) { if(j == -1 || s[i] == t[j]) { ++i; ++j; if(j == m) { return i - m + 1; } } else { j = next[j]; } } return -1; } void getnext(int *t, int m) { int i = 0, j = 0; next[0] = -1; j = next[i]; while(i < m) { if(j == -1 || t[i] == t[j]) { next[++i] = ++j; } else { j = next[j]; } } } int main() { int T; scanf("%d",&T); while(T--) { int n,m; scanf("%d%d",&n,&m); for(int i=0;i<n;i++) scanf("%d",&s[i]); for(int i=0;i<m;i++) scanf("%d",&t[i]); getnext(t, m); printf("%d ", Kmp(s, n, t, m)); } return 0; }