• Linux 性能调优CPU篇:平均负载与CPU使用率


    平均负载

    查看平均负载
    每次发现系统变慢时,我们通常做的第一件事,就是执行 top 或者 uptime 命令,来了解系统的负载情况:

    02:34:03 up 2 days, 20:14, 1 user, load average: 0.63, 0.83, 0.88

    分别对应:

    • 02:34:03 :当前时间
    • up 2 days, 20:14 :系统运行时间
    • 1 user :正在登录用户数
    • load average: 0.63, 0.83, 0.88 :过去 1 分钟、5 分钟、15 分钟的平均负载(Load Average)

    平均负载的定义
    平均负载是指单位时间内,系统处于运行状态等待运行状态不可中断状态的平均进程数,也就是平均活跃进程数,它和 CPU 使用率并没有直接关系。

    所谓可运行状态的进程,是指正在使用 CPU 或者正在等待 CPU 的进程,也就是我们常用 ps 命令看到的,处于 R 状态(Running 或 Runnable)的进程。

    不可中断进程

    不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的,比如最常见的是等待硬件设备的 I/O 响应,也就是我们在 ps 命令中看到的 D 状态(Uninterruptible Sleep,也称为 Disk Sleep)的进程。

    比如,当一个进程向磁盘读写数据时,为了保证数据的一致性,在得到磁盘回复前,它是不能被其他进程或者中断打断的,这个时候的进程就处于不可中断状态。

    如果此时的进程被打断了,就容易出现磁盘数据与进程数据不一致的问题。所以,不可中断状态实际上是系统对进程和硬件设备的一种保护机制

    平均负载的合理值
    平均的是活跃进程数,那么最理想的,就是每个 CPU 上都刚好运行着一个进程,这样每个 CPU 都得到了充分利用。
    比如当平均负载为 2 时:

    • 在2个CPU 的系统上,意味着所有的 CPU 都刚好被完全占用。
    • 在 4 个 CPU 的系统上,意味着 CPU 有 50% 的空闲。
    • 在只有 1 个 CPU 的系统中,则意味着有一半的进程竞争不到 CPU。

    平均负载最理想的情况是等于 CPU 个数。所以在评判平均负载时,首先你要知道系统有几个 CPU,这可以通过 top 命令或者从文件 /proc/cpuinfo 中读取,比如:

    grep 'model name' /proc/cpuinfo | wc -l

    当平均负载高于 CPU 数量 70% 的时候,就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。

    平均负载有三个数值,到底该参考哪一个呢?实际上,都要看。

    三个不同时间间隔的平均值,其实给我们提供了,分析系统负载趋势的数据来源,让我们能更全面、更立体地理解目前的负载状况。

    打个比方,就像初秋时北京的天气,如果只看中午的温度,你可能以为还在 7 月份的大夏天呢。但如果你结合了早上、中午、晚上三个时间点的温度来看,基本就可以全方位了解这一天的天气情况了。

    同样的,前面说到的 CPU 的三个负载时间段也是这个道理。如果 1 分钟、5 分钟、15 分钟的三个值基本相同,或者相差不大,那就说明系统负载很平稳。

    但如果 1 分钟的值远小于 15 分钟的值,就说明系统最近 1 分钟的负载在减少,而过去 15 分钟内却有很大的负载。反过来,如果 1 分钟的值远大于 15 分钟的值,就说明最近 1 分钟的负载在增加,这种增加有可能只是临时性的,也有可能还会持续增加下去,所以就需要持续观察。

    一旦 1 分钟的平均负载接近或超过了 CPU 的个数,就意味着系统正在发生过载的问题,这时就得分析调查是哪里导致的问题,并要想办法优化了。这里我再举个例子,假设我们在一个单 CPU 系统上看到平均负载为 1.73,0.60,7.98,那么说明在过去 1 分钟内,系统有 73% 的超载,而在 15 分钟内,有 698% 的超载,从整体趋势来看,系统的负载在降低。

    平均负载与 CPU 使用率

    平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。

    而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:

    • CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;
    • I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;
    • 大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。

    平均负载案例分析

    机器配置:2 CPU,8GB 内存。

    准备:iostat、mpstat、pidstat分析工具。
    安装 stress 和 sysstat 包,如 apt install stress sysstat。

    • stress 是一个 Linux 系统压力测试工具,这里我们用作异常进程模拟平均负载升高的场景。
    • sysstat 包含了常用的 Linux 性能工具,用来监控和分析系统的性能。我们的案例会用到这个包的两个命令 mpstat 和 pidstat。
    • mpstat 是一个常用的多核 CPU 性能分析工具,用来实时查看每个 CPU 的性能指标,以及所有 CPU 的平均指标。
    • pidstat 是一个常用的进程性能分析工具,用来实时查看进程的 CPU、内存、I/O 以及上下文切换等性能指标。

    场景一:CPU 密集型进程首先,我们在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:

    stress --cpu 1 --timeout 600

    接着,在第二个终端运行 uptime 查看平均负载的变化情况:

    # -d 参数表示高亮显示变化的区域

    watch -d uptime

    ..., load average: 1.00, 0.75, 0.39

    最后,在第三个终端运行 mpstat 查看 CPU 使用率的变化情况:

    # -P ALL 表示监控所有CPU,后面数字5表示间隔5秒后输出一组数据

    $ mpstat -P ALL 5
    Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
    13:30:06 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
    13:30:11 all 50.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 49.95
    13:30:11 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
    13:30:11 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

    从终端二中可以看到,1 分钟的平均负载会慢慢增加到 1.00,而从终端三中还可以看到,正好有一个 CPU 的使用率为 100%,但它的 iowait 只有 0。这说明,平均负载的升高正是由于 CPU 使用率为 100% 。

    那么,到底是哪个进程导致了 CPU 使用率为 100% 呢?你可以使用 pidstat 来查询:

    # 间隔5秒后输出一组数据
    $ pidstat -u 5 1
    13:37:07      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
    13:37:12        0      2962  100.00    0.00    0.00    0.00  100.00     1  stress

    场景二:I/O 密集型进程首先还是运行 stress 命令,但这次模拟 I/O 压力,即不停地执行 sync

     stress -i 1 --timeout 600

    还是在第二个终端运行 uptime 查看平均负载的变化情况

    watch -d uptime

    ..., load average: 1.06, 0.58, 0.37

    然后,第三个终端运行 mpstat 查看 CPU 使用率的变化情况:

    # 显示所有CPU的指标,并在间隔5秒输出一组数据
    $ mpstat -P ALL 5 1
    Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
    13:41:28     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
    13:41:33     all    0.21    0.00   12.07   32.67    0.00    0.21    0.00    0.00    0.00   54.84
    13:41:33       0    0.43    0.00   23.87   67.53    0.00    0.43    0.00    0.00    0.00    7.74
    13:41:33       1    0.00    0.00    0.81    0.20    0.00    0.00    0.00    0.00    0.00   98.99

    从这里可以看到,1 分钟的平均负载会慢慢增加到 1.06,其中一个 CPU 的系统 CPU 使用率升高到了 23.87,而 iowait 高达 67.53%。这说明,平均负载的升高是由于 iowait 的升高。那么到底是哪个进程,导致 iowait 这么高呢?我们还是用 pidstat 来查询:

    # 间隔5秒后输出一组数据,-u表示CPU指标
    $ pidstat -u 5 1
    Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
    13:42:08      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
    13:42:13        0       104    0.00    3.39    0.00    0.00    3.39     1  kworker/1:1H
    13:42:13        0       109    0.00    0.40    0.00    0.00    0.40     0  kworker/0:1H
    13:42:13        0      2997    2.00   35.53    0.00    3.99   37.52     1  stress
    13:42:13        0      3057    0.00    0.40    0.00    0.00    0.40     0  pidstat

    场景三:大量进程的场景当系统中运行进程超出 CPU 运行能力时,就会出现等待 CPU 的进程。比如,我们还是使用 stress,但这次模拟的是 8 个进程:

    stress -c 8 --timeout 600

    由于系统只有 2 个 CPU,明显比 8 个进程要少得多,因而,系统的 CPU 处于严重过载状态,平均负载高达 7.97:

    $ uptime
    ...,  load average: 7.97, 5.93, 3.02

    接着再运行 pidstat 来看一下进程的情况:

    # 间隔5秒后输出一组数据
    $ pidstat -u 5 1
    14:23:25      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
    14:23:30        0      3190   25.00    0.00    0.00   74.80   25.00     0  stress
    14:23:30        0      3191   25.00    0.00    0.00   75.20   25.00     0  stress
    14:23:30        0      3192   25.00    0.00    0.00   74.80   25.00     1  stress
    14:23:30        0      3193   25.00    0.00    0.00   75.00   25.00     1  stress
    14:23:30        0      3194   24.80    0.00    0.00   74.60   24.80     0  stress
    14:23:30        0      3195   24.80    0.00    0.00   75.00   24.80     0  stress
    14:23:30        0      3196   24.80    0.00    0.00   74.60   24.80     1  stress
    14:23:30        0      3197   24.80    0.00    0.00   74.80   24.80     1  stress
    14:23:30        0      3200    0.00    0.20    0.00    0.20    0.20     0  pidstat

    可以看出,8 个进程在争抢 2 个 CPU,每个进程等待 CPU 的时间(也就是代码块中的 %wait 列)高达 75%。这些超出 CPU 计算能力的进程,最终导致 CPU 过载。小结分析完这三个案例,我再来归纳一下平均负载的理解。

    平均负载提供了一个快速查看系统整体性能的手段,反映了整体的负载情况。但只看平均负载本身,我们并不能直接发现,到底是哪里出现了瓶颈。

    所以,在理解平均负载时,也要注意:

    • 平均负载高有可能是 CPU 密集型进程导致的;
    • 平均负载高并不一定代表 CPU 使用率高;
    • 还有可能是 I/O 更繁忙了;

    当发现负载高的时候,你可以使用 mpstat、pidstat 等工具,辅助分析负载的来源。

    笔记:https://time.geekbang.org/column/article/69618

  • 相关阅读:
    .Net 集合类
    Linux与Windows共享资源samba+mount
    Linux系统基本设置
    python实例31[urllib.request.urlopen获取股票信息]
    iptables 基本命令使用举例
    API控制VM虚拟机(VM Workstation or VM Server)
    vbs实现unicode和ascii的转化
    python语法31[string的print和format]
    Windows下运行XServer
    Perl IDE之Perl Express和Eclipse+EPIC+PadWalker
  • 原文地址:https://www.cnblogs.com/-wenli/p/13708685.html
Copyright © 2020-2023  润新知